Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, Theoretical Studies, Cytotoxicity of 2-((4-(Dimethylamino)Benzylidene)Amino)-5-Methylphenol with Potential JNK1 Inhibitory Activity

Yıl 2023, , 253 - 272, 15.08.2023
https://doi.org/10.22312/sdusbed.1310094

Öz

Cisplatin, doxorubicin, hydroxycamptothecin, leucovorin, vincristine and 5-fluorouracil resistance of cancer cells are associated with the activities of C-Jun N-Terminal Kinase 1 (JNK1). Inhibition of the JNK1 by pharmacological agents could be a beneficial attempt for reversing the chemoresistance of various cancer cells. However, there is no FDA-approved JNK inhibitor for safe use in clinics in today’s clinics. In this study, a Schiff base 2-((4-(dimethylamino)benzylidene)amino)-5-methylphenol, (7S4) has been synthesized and characterized by 1H, 13C-NMR, FT-IR and elemental analysis. The stable geometry of 7S4 has been determined by DFT method with Gaussian09 program (B3LYP/6-311g++(d,p))). The Gibbs Free energies, stable tautomer forms, H-bond, Mulliken charges, dipole moment, natural bond orbital (NBO), HOMO, LUMO and band gap energy (EGAP), molecular electrostatic potential (MEP) and solvent accessibility surface areas (SASA) have been calculated. Drug-likeness, anticancer and JNK1 inhibitory activities of 7S4 have been evaluated. Enol tautomer form of trans 7S4 was characterized as the most stable structure. 7S4 was observed to be a reactive compound in chemical reactions with a low EGAP value. In addition, high and low electron density regions of 7S4 are responsible for the establishment of chemical bonds in biological systems. 7S4 exhibited strong druggability with the agreement on Lipinski, Ghose, Veber, Egan, and Muegge rules. Cytotoxicity tests and molecular docking revealed that 7S4 poses a potential JNK1 inhibitor activity.

Destekleyen Kurum

Anadolu University Scientific Research Projects (Project No. ) for financial support. The authors also grateful to Anadolu University Scientific Research commission for supporting Gaussian 09 (Project No:1102F027) and Gauss View 5.0 (Project No:

Proje Numarası

1509F633, 20ADP182 and 1102F027, 1304F064

Teşekkür

Authors are also grateful to Prof. Dr. Hülya Sivas, Ayşe Aydoğdu Erdönmez and Dila Ercengiz for their valuable contributions and suggestions. The authors are thankful to the Anadolu University Scientific Research Projects (Project No. 1509F633 and 20ADP182) for financial support. The authors also grateful to Anadolu University Scientific Research commission for supporting Gaussian 09 (Project No:1102F027) and Gauss View 5.0 (Project No: 1304F064) programs with the projects. We would like to thank to Anadolu University for providing the opportunity to use the CS ChemBioDraw Ultra 16.0.1.4 for Microsoft Windows program.

Kaynakça

  • [1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin., 71 (3), 209–249. https://doi.org/https://doi.org/10.3322/caac.21660.
  • [2] Zeytinoglu, H., Incesu, Z., Baser, K. H. C. 2003. Inhibition of DNA Synthesis by Carvacrol in Mouse Myoblast Cells Bearing a Human N-RAS Oncogene. Phytomedicine, 10 (4), 292–299. https://doi.org/https://doi.org/10.1078/094471103322004785.
  • [3] Demiroglu-Zergeroglu, A., Ergene, E., Ayvali, N., Kuete, V., Sivas, H. 2016. Quercetin and Cisplatin Combined Treatment Altered Cell Cycle and Mitogen Activated Protein Kinase Expressions in Malignant Mesotelioma Cells. BMC Complement. Altern. Med. 16 (1), 281. https://doi.org/10.1186/s12906-016-1267-x.
  • [4] Uysal, U. D., Ercengiz, D., Karaosmanoğlu, O., Berber, B., Sivas, H., Berber, H. 2021. Theoretical and Experimental Electronic Transition Behaviour Study of 2-((4-(Dimethylamino)Benzylidene)Amino)-4-Methylphenol and Its Cytotoxicity. J. Mol. Struct., 1227, 129370. https://doi.org/https://doi.org/10.1016/j.molstruc.2020.129370.
  • [5] Borges, A. A., de Souza, M. P., da Fonseca, A. C. C., Wermelinger, G. F., Ribeiro, R. C. B., Amaral, A. A. P., de Carvalho, C. J. C., Abreu, L. S., de Queiroz, L. N., de Almeida, E. C. P., Rabelo, V. W., Abreu, P. A., Pontes, B., Ferreira, V. F., da Silva, F. de C., Forezi, L. da S. M., Robbs, B. K. 2022. Chemoselective Synthesis of Mannich Adducts from 1,4-Naphthoquinones and Profile as Autophagic Inducers in Oral Squamous Cell Carcinoma. Molecules, 28 (1), 309. https://doi.org/10.3390/molecules28010309.
  • [6] Di Micco, S., Di Sarno, V., Rossi, M., Vestuto, V., Konno, T., Novi, S., Tecce, M. F., Napolitano, V., Ciaglia, T., Vitale, A., Gomez-Monterrey, I. M., Bifulco, G., Bertamino, A., Ostacolo, C., Blasi, P., Fasano, A., Campiglia, P., Musella, S. 2022. In Silico Identification and In Vitro Evaluation of New ABCG2 Transporter Inhibitors as Potential Anticancer Agents. Int. J. Mol. Sci., 24 (1), 725. https://doi.org/10.3390/ijms24010725.
  • [7] Liu, Z., Zou, H., Dang, Q., Xu, H., Liu, L., Zhang, Y., Lv, J., Li, H., Zhou, Z., Han, X. 2022. Biological and Pharmacological Roles of M6A Modifications in Cancer Drug Resistance. Mol. Cancer, 21 (1), 220. https://doi.org/10.1186/s12943-022-01680-z.
  • [8] Bonventre, J. V. 2003. Molecular Response to Cytotoxic Injury: Role of Inflammation, MAP Kinases, and Endoplasmic Reticulum Stress Response. Semin. Nephrol., 23 (5), 439–448. https://doi.org/https://doi.org/10.1016/S0270-9295(03)00115-3.
  • [9] Lipner, M. B., Peng, X. L., Jin, C., Xu, Y., Gao, Y., East, M. P., Rashid, N. U., Moffitt, R. A., Herrera Loeza, S. G., Morrison, A. B., Golitz, B. T., Vaziri, C., Graves, L. M., Johnson, G. L., Yeh, J. J. 2020. Irreversible JNK1-JUN Inhibition by JNK-IN-8 Sensitizes Pancreatic Cancer to 5-FU/FOLFOX Chemotherapy. JCI Insight, 5 (8). https://doi.org/10.1172/jci.insight.129905.
  • [10] Li, F., Meng, L., Zhou, J., Xing, H., Wang, S., Xu, G., Zhu, H., Wang, B., Chen, G., Lu, Y.-P., Ma, D. 2005. Reversing Chemoresistance in Cisplatin-Resistant Human Ovarian Cancer Cells: A Role of c-Jun NH2-Terminal Kinase 1. Biochem. Biophys. Res. Commun., 335 (4), 1070–1077. https://doi.org/https://doi.org/10.1016/j.bbrc.2005.07.169.
  • [11] Liu, X.-Y., Liu, S.-P., Jiang, J., Zhang, X., Zhang, T. 2016. Inhibition of the JNK Signaling Pathway Increases Sensitivity of Hepatocellular Carcinoma Cells to Cisplatin by Down-Regulating Expression of P-Glycoprotein. Eur. Rev. Med. Pharmacol. Sci., 20 (6), 1098–1108.
  • [12] Shinoda, C., Maruyama, M., Fujishita, T., Dohkan, J., Oda, H., Shinoda, K., Yamada, T., Miyabayashi, K., Hayashi, R., Kawagishi, Y., Fujita, T., Matsui, S., Sugiyama, E., Muraguchi, A., Kobayashi, M. 2005. Doxorubicin Induces Expression of Multidrug Resistance-Associated Protein 1 in Human Small Cell Lung Cancer Cell Lines by the c-Jun N-Terminal Kinase Pathway. Int. J. Cancer, 117 (1), 21–31. https://doi.org/https://doi.org/10.1002/ijc.21094.
  • [13] Kim, J.-H., Lee, S. C., Ro, J., Kang, H. S., Kim, H. S., Yoon, S. 2010. Jnk Signaling Pathway-Mediated Regulation of Stat3 Activation Is Linked to the Development of Doxorubicin Resistance in Cancer Cell Lines. Biochem. Pharmacol., 79 (3), 373–380. https://doi.org/https://doi.org/10.1016/j.bcp.2009.09.008.
  • [14] Kim, J.-H., Kim, T. H., Kang, H. S., Ro, J., Kim, H. S., Yoon, S. 2009. SP600125, an Inhibitor of Jnk Pathway, Reduces Viability of Relatively Resistant Cancer Cells to Doxorubicin. Biochem. Biophys. Res. Commun., 387 (3), 450–455. https://doi.org/https://doi.org/10.1016/j.bbrc.2009.07.036.
  • [15] Liu, Y., Zhang, X., Wang, J., Yang, J., Tan, W. 2015. JNK Is Required for Maintaining the Tumor-Initiating Cell-like Properties of Acquired Chemoresistant Human Cancer Cells. Acta Pharmacol. Sin., 36 (9), 1099–1106. https://doi.org/10.1038/aps.2015.58.
  • [16] Zhu, M. M., Tong, J. L., Xu, Q., Nie, F., Xu, X. T., Xiao, S. D., Ran, Z. H. 2012. Increased JNK1 Signaling Pathway Is Responsible for ABCG2-Mediated Multidrug Resistance in Human Colon Cancer. PLoS One, 7 (8), e41763.
  • [17] Vasilevskaya, I. A., Selvakumaran, M., Roberts, D., O’Dwyer, P. J. 2016. JNK1 Inhibition Attenuates Hypoxia-Induced Autophagy and Sensitizes to Chemotherapy. Mol. Cancer Res., 14 (8), 753 LP – 763. https://doi.org/10.1158/1541-7786.MCR-16-0035.
  • [18] Wu, Q., Wu, W., Jacevic, V., Franca, T. C. C., Wang, X., Kuca, K. 2020. Selective Inhibitors for JNK Signalling: A Potential Targeted Therapy in Cancer. J. Enzyme Inhib. Med. Chem., 35 (1), 574–583. https://doi.org/10.1080/14756366.2020.1720013.
  • [19] Roskoski, R. 2019. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors. Pharmacol. Res., 144, 19–50. https://doi.org/https://doi.org/10.1016/j.phrs.2019.03.006.
  • [20] Berhanu, A. L., Gaurav, Mohiuddin, I., Malik, A. K., Aulakh, J. S., Kumar, V., Kim, K.-H. 2019. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC Trends Anal. Chem., 116, 74–91. https://doi.org/https://doi.org/10.1016/j.trac.2019.04.025.
  • [21] Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y., Zhao, X. 2017. A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biological Thiols. Sensors Actuators B Chem., 250, 132–138. https://doi.org/https://doi.org/10.1016/j.snb.2017.04.147.
  • [22] Kajal, A., Bala, S., Kamboj, S., Sharma, N., Saini, V. 2013. Schiff Bases: A Versatile Pharmacophore. J. Catal., 2013, 893512. https://doi.org/10.1155/2013/893512.
  • [23] Sıdır, İ., Sıdır, Y. G., Berber, H., Demiray, F. 2019. Electronic Structure and Optical Properties of Schiff Base Hydrazone Derivatives by Solution Technique for Optoelectronic Devices: Synthesis, Experiment and Quantum Chemical Investigation. J. Mol. Struct., 1176, 31–46. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.08.067.
  • [24] Sıdır, Y. G., Aslan, C., Berber, H., Sıdır, İ. 2019. The Electronic Structure, Solvatochromism, and Electric Dipole Moments of New Schiff Base Derivatives Using Absorbance and Fluorescence Spectra. Struct. Chem., 30 (3), 835–851. https://doi.org/10.1007/s11224-018-1228-8.
  • [25] Sıdır, Y. G., Pirbudak, G., Berber, H., Sıdır, İ. 2017. Study on the Electronic and Photophysical Properties of the Substitute-((2-Phenoxybenzylidene)Amino)Phenol Derivatives: Synthesis, Solvatochromism, Electric Dipole Moments and DFT Calculations. J. Mol. Liq., 242, 1096–1110. https://doi.org/https://doi.org/10.1016/j.molliq.2017.07.070.
  • [26] Gowda, A., Roy, A., Kumar, S. 2017. Synthesis and Mesomorphic Properties of Novel Schiff Base Liquid Crystalline EDOT Derivatives. J. Mol. Liq., 225, 840–847. https://doi.org/https://doi.org/10.1016/j.molliq.2016.11.010.
  • [27] Kausar, N., Muratza, S., Raza, M. A., Rafique, H., Arshad, M. N., Altaf, A. A., Asiri, A. M., Shafqat, S. S., Shafqat, S. R. 2019. Sulfonamide Hybrid Schiff Bases of Anthranilic Acid: Synthesis, Characterization and Their Biological Potential. J. Mol. Struct., 1185, 8–20. https://doi.org/https://doi.org/10.1016/j.molstruc.2019.02.056.
  • [28] Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H., Elmalı, A. 2016. Synthesis, Spectral and Quantum Chemical Studies and Use of (E)-3-[(3,5-Bis(Trifluoromethyl)Phenylimino)Methyl]Benzene-1,2-Diol and Its Ni(II) and Cu(II) Complexes as an Anion Sensor, DNA Binding, DNA Cleavage, Anti-Microbial, Anti-Mutagenic and Anti-Canc. J. Mol. Struct., 1125. https://doi.org/10.1016/j.molstruc.2016.06.058.
  • [29] Judith Percino, M., Cerón, M., Castro, M. E., Ramírez, R., Soriano, G., Chapela, V. M. 2015. (E)-2-[(2-Hydroxybenzylidene)Amino]Phenylarsonic Acid Schiff Base: Synthesis, Characterization and Theoretical Studies. J. Mol. Struct., 1081, 193–200. https://doi.org/https://doi.org/10.1016/j.molstruc.2014.10.030.
  • [30] Alpaslan, G., Boyacioglu, B., Demir, N., Tümer, Y., Yapar, G., Yıldırım, N., Yıldız, M., Ünver, H. 2019. Synthesis, Characterization, Biological Activity and Theoretical Studies of a 2-Amino-6-Methoxybenzothiazole-Based Fluorescent Schiff Base. J. Mol. Struct., 1180, 170–178. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.11.065.
  • [31] Cunha Almeida, T., Gonzaga Ribeiro, L. H., Ferreira dos Santos, L. B., da Silva, C. M., Tupinambá Branquinho, R., de Lana, M., Ramos Gadelha, F., de Fátima, Â. 2018. Synthesis, in Vitro and in Vivo Anti-Trypanosoma Cruzi and Toxicological Activities of Nitroaromatic Schiff Bases. Biomed. Pharmacother., 108, 1703–1711. https://doi.org/https://doi.org/10.1016/j.biopha.2018.09.176.
  • [32] Saadaoui, I., Krichen, F., Ben Salah, B., Ben Mansour, R., Miled, N., Bougatef, A., Kossentini, M. 2019. Design, Synthesis and Biological Evaluation of Schiff Bases of 4-Amino-1,2,4-Triazole Derivatives as Potent Angiotensin Converting Enzyme Inhibitors and Antioxidant Activities. J. Mol. Struct., 1180, 344–354. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.12.008.
  • [33] Zaltariov, M.-F., Avadanei, M., Balan, M., Peptanariu, D., Vornicu, N., Shova, S. 2019. Synthesis, Structural Characterization and Biological Studies of New Schiff Bases Containing Trimethylsilyl Groups. J. Mol. Struct., 1175, 624–631. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.08.019.
  • [34] Al-Shemary, R. K. R., Al-khazraji, A. M. A., Niseaf, A. N. 2016. Preparation, Spectroscopic Study of Schiff Base Ligand Complexes with Some Metal Ions and Evaluation of Antibacterial Activity. Pharma Innov. J., 5, 81–86.
  • [35] Heo, Y.-S., Kim, S.-K., Seo, C. Il, Kim, Y. K., Sung, B.-J., Lee, H. S., Lee, J. Il, Park, S.-Y., Kim, J. H., Hwang, K. Y., Hyun, Y.-L., Jeon, Y. H., Ro, S., Cho, J. M., Lee, T. G., Yang, C.-H. 2004. Structural Basis for the Selective Inhibition of JNK1 by the Scaffolding Protein JIP1 and SP600125. EMBO J., 23 (11), 2185–2195. https://doi.org/10.1038/sj.emboj.7600212.
  • [36] Chamberlain, S. D., Redman, A. M., Wilson, J. W., Deanda, F., Shotwell, J. B., Gerding, R., Lei, H., Yang, B., Stevens, K. L., Hassell, A. M., Shewchuk, L. M., Leesnitzer, M. A., Smith, J. L., Sabbatini, P., Atkins, C., Groy, A., Rowand, J. L., Kumar, R., Mook, R. A., Moorthy, G., Patnaik, S. 2009. Optimization of 4,6-Bis-Anilino-1H-Pyrrolo[2,3-d]Pyrimidine IGF-1R Tyrosine Kinase Inhibitors towards JNK Selectivity. Bioorg. Med. Chem. Lett., 19 (2), 360–364. https://doi.org/https://doi.org/10.1016/j.bmcl.2008.11.077.
  • [37] Bennett, B. L., Sasaki, D. T., Murray, B. W., O’Leary, E. C., Sakata, S. T., Xu, W., Leisten, J. C., Motiwala, A., Pierce, S., Satoh, Y., Bhagwat, S. S., Manning, A. M., Anderson, D. W. 2001. SP600125, an Anthrapyrazolone Inhibitor of Jun N-Terminal Kinase. Proc. Natl. Acad. Sci., 98 (24), 13681–13686. https://doi.org/10.1073/pnas.251194298.
  • [38] Li, P., Zhao, Q.-L., Rehman, M., Jawaid, P., Cui, Z.-G., Ahmed, K., Kondo, T., Saitoh, J.-I., Noguchi, K. 2023. Isofraxidin Enhances Hyperthermia‑induced Apoptosis via Redox Modification in Acute Monocytic Leukemia U937 Cells. Mol. Med. Rep., 27 (2), 41. https://doi.org/10.3892/mmr.2023.12928.
  • [39] Yuan, M.-K., Kao, J.-W., Wu, W.-T., Chen, C.-R., Chang, C.-I., Wu, Y.-J. 2022. Investigation of Cell Cytotoxic Activity and Molecular Mechanism of 5β,19-Epoxycucurbita-6,23( E )-Diene-3β,19( R ),25-Triol Isolated from Momordica Charantia on Hepatoma Cells. Pharm. Biol., 60 (1), 1214–1223. https://doi.org/10.1080/13880209.2022.2077766.
  • [40] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V, Cioslowski, J., Fox, D. J. Gaussian 09 Revision A.2. 2009.
  • [41] Dennington, R., Keith, T., Millam, J. GaussView. Semichem Inc.: Shawnee Mission, KS 2009.
  • [42] CS ChemBioDraw Ultra 16.0.1.4 for Microsoft Windows.
  • [43] MarvinSketch 19.27.0.
  • [44] Kuete, V., Ngnintedo, D., Fotso, G. W., Karaosmanoğlu, O., Ngadjui, B. T., Keumedjio, F., Yeboah, S. O., Andrae-Marobela, K., Sivas, H. 2018. Cytotoxicity of Seputhecarpan D, Thonningiol and 12 Other Phytochemicals from African Flora towards Human Carcinoma Cells. BMC Complement. Altern. Med., 18 (1), 36. https://doi.org/10.1186/s12906-018-2109-9.
  • [45] Daina, A., Michielin, O., Zoete, V. 2017. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep., 7 (1), 42717. https://doi.org/10.1038/srep42717.
  • [46] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., Olson, A. J. 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem., 30 (16), 2785–2791. https://doi.org/10.1002/jcc.21256.
  • [47] Trott, O., Olson, A. J. 2010. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem., 31 (2), 455–461. https://doi.org/10.1002/jcc.21334.
  • [48] L DeLano, W. 2002. Pymol: An Open-Source Molecular Graphics Tool. {CCP4} Newsl. Protein Crystallogr., 40, 82–92.

Potansiyel JNK1 İnhibe Edici Aktiviteye Sahip 2-((4-(dimetilamino)benziliden)amino)-5-metilfenol’ün Sentezi, Teorik Çalışmaları, Sitotoksisitesi

Yıl 2023, , 253 - 272, 15.08.2023
https://doi.org/10.22312/sdusbed.1310094

Öz

Kanser hücrelerinin sisplatin, doksorubisin, hidroksikamptotesin, lökovorin, vinkristin ve 5-fluorourasil direnci, C-Jun N-Terminal Kinaz 1 (JNK1) aktiviteleri ile ilişkilidir. JNK1'in farmakolojik ajanlar tarafından inhibisyonu, çeşitli kanser hücrelerinin kemodirencini tersine çevirmek için yararlı bir yaklaşım olabilir. Ancak günümüz kliniklerinde güvenli kullanım için FDA onaylı bir JNK inhibitörü bulunmamaktadır. Bu çalışmada, bir Schiff bazı 2-((4-(dimetilamino)benziliden)amino)-5-metilfenol, (7S4) sentezlenmiş ve 1H, 13C-NMR, FT-IR ve element analizi ile karakterize edilmiştir. 7S4'ün kararlı geometrisi Gaussian09 programı (B3LYP/6-311g++(d,p)) ile DFT yöntemi ile belirlenmiştir. Gibbs Serbest enerjileri, kararlı tautomer formları, H-bağı, Mulliken yükleri, dipol momenti, doğal bağ orbital (NBO), HOMO, LUMO ve bant boşluk enerjisi (EGAP), moleküler elektrostatik potansiyel (MEP) ve çözücü erişilebilirlik yüzey alanları (SASA) hesaplanmıştır. 7S4'ün ilaca benzerliği, antikanser ve JNK1 inhibitör aktiviteleri değerlendirilmiştir. Trans 7S4'ün enol tautomer formu en kararlı yapı olarak nitelendirildi. 7S4'ün düşük EGAP değeri ile kimyasal reaksiyonlarda reaktif bir bileşik olduğu gözlendi. Ayrıca 7S4'ün yüksek ve düşük elektron yoğunluklu bölgeleri biyolojik sistemlerde kimyasal bağların kurulmasından sorumludur. 7S4, Lipinski, Ghose, Veber, Egan ve Muegge kurallarına ilişkin anlaşma ile güçlü uyuşturulabilirlik sergiledi. Sitotoksisite testleri ve moleküler kenetlenme, 7S4'ün potansiyel bir JNK1 inhibitör aktivitesi oluşturduğunu ortaya çıkardı.

Proje Numarası

1509F633, 20ADP182 and 1102F027, 1304F064

Kaynakça

  • [1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin., 71 (3), 209–249. https://doi.org/https://doi.org/10.3322/caac.21660.
  • [2] Zeytinoglu, H., Incesu, Z., Baser, K. H. C. 2003. Inhibition of DNA Synthesis by Carvacrol in Mouse Myoblast Cells Bearing a Human N-RAS Oncogene. Phytomedicine, 10 (4), 292–299. https://doi.org/https://doi.org/10.1078/094471103322004785.
  • [3] Demiroglu-Zergeroglu, A., Ergene, E., Ayvali, N., Kuete, V., Sivas, H. 2016. Quercetin and Cisplatin Combined Treatment Altered Cell Cycle and Mitogen Activated Protein Kinase Expressions in Malignant Mesotelioma Cells. BMC Complement. Altern. Med. 16 (1), 281. https://doi.org/10.1186/s12906-016-1267-x.
  • [4] Uysal, U. D., Ercengiz, D., Karaosmanoğlu, O., Berber, B., Sivas, H., Berber, H. 2021. Theoretical and Experimental Electronic Transition Behaviour Study of 2-((4-(Dimethylamino)Benzylidene)Amino)-4-Methylphenol and Its Cytotoxicity. J. Mol. Struct., 1227, 129370. https://doi.org/https://doi.org/10.1016/j.molstruc.2020.129370.
  • [5] Borges, A. A., de Souza, M. P., da Fonseca, A. C. C., Wermelinger, G. F., Ribeiro, R. C. B., Amaral, A. A. P., de Carvalho, C. J. C., Abreu, L. S., de Queiroz, L. N., de Almeida, E. C. P., Rabelo, V. W., Abreu, P. A., Pontes, B., Ferreira, V. F., da Silva, F. de C., Forezi, L. da S. M., Robbs, B. K. 2022. Chemoselective Synthesis of Mannich Adducts from 1,4-Naphthoquinones and Profile as Autophagic Inducers in Oral Squamous Cell Carcinoma. Molecules, 28 (1), 309. https://doi.org/10.3390/molecules28010309.
  • [6] Di Micco, S., Di Sarno, V., Rossi, M., Vestuto, V., Konno, T., Novi, S., Tecce, M. F., Napolitano, V., Ciaglia, T., Vitale, A., Gomez-Monterrey, I. M., Bifulco, G., Bertamino, A., Ostacolo, C., Blasi, P., Fasano, A., Campiglia, P., Musella, S. 2022. In Silico Identification and In Vitro Evaluation of New ABCG2 Transporter Inhibitors as Potential Anticancer Agents. Int. J. Mol. Sci., 24 (1), 725. https://doi.org/10.3390/ijms24010725.
  • [7] Liu, Z., Zou, H., Dang, Q., Xu, H., Liu, L., Zhang, Y., Lv, J., Li, H., Zhou, Z., Han, X. 2022. Biological and Pharmacological Roles of M6A Modifications in Cancer Drug Resistance. Mol. Cancer, 21 (1), 220. https://doi.org/10.1186/s12943-022-01680-z.
  • [8] Bonventre, J. V. 2003. Molecular Response to Cytotoxic Injury: Role of Inflammation, MAP Kinases, and Endoplasmic Reticulum Stress Response. Semin. Nephrol., 23 (5), 439–448. https://doi.org/https://doi.org/10.1016/S0270-9295(03)00115-3.
  • [9] Lipner, M. B., Peng, X. L., Jin, C., Xu, Y., Gao, Y., East, M. P., Rashid, N. U., Moffitt, R. A., Herrera Loeza, S. G., Morrison, A. B., Golitz, B. T., Vaziri, C., Graves, L. M., Johnson, G. L., Yeh, J. J. 2020. Irreversible JNK1-JUN Inhibition by JNK-IN-8 Sensitizes Pancreatic Cancer to 5-FU/FOLFOX Chemotherapy. JCI Insight, 5 (8). https://doi.org/10.1172/jci.insight.129905.
  • [10] Li, F., Meng, L., Zhou, J., Xing, H., Wang, S., Xu, G., Zhu, H., Wang, B., Chen, G., Lu, Y.-P., Ma, D. 2005. Reversing Chemoresistance in Cisplatin-Resistant Human Ovarian Cancer Cells: A Role of c-Jun NH2-Terminal Kinase 1. Biochem. Biophys. Res. Commun., 335 (4), 1070–1077. https://doi.org/https://doi.org/10.1016/j.bbrc.2005.07.169.
  • [11] Liu, X.-Y., Liu, S.-P., Jiang, J., Zhang, X., Zhang, T. 2016. Inhibition of the JNK Signaling Pathway Increases Sensitivity of Hepatocellular Carcinoma Cells to Cisplatin by Down-Regulating Expression of P-Glycoprotein. Eur. Rev. Med. Pharmacol. Sci., 20 (6), 1098–1108.
  • [12] Shinoda, C., Maruyama, M., Fujishita, T., Dohkan, J., Oda, H., Shinoda, K., Yamada, T., Miyabayashi, K., Hayashi, R., Kawagishi, Y., Fujita, T., Matsui, S., Sugiyama, E., Muraguchi, A., Kobayashi, M. 2005. Doxorubicin Induces Expression of Multidrug Resistance-Associated Protein 1 in Human Small Cell Lung Cancer Cell Lines by the c-Jun N-Terminal Kinase Pathway. Int. J. Cancer, 117 (1), 21–31. https://doi.org/https://doi.org/10.1002/ijc.21094.
  • [13] Kim, J.-H., Lee, S. C., Ro, J., Kang, H. S., Kim, H. S., Yoon, S. 2010. Jnk Signaling Pathway-Mediated Regulation of Stat3 Activation Is Linked to the Development of Doxorubicin Resistance in Cancer Cell Lines. Biochem. Pharmacol., 79 (3), 373–380. https://doi.org/https://doi.org/10.1016/j.bcp.2009.09.008.
  • [14] Kim, J.-H., Kim, T. H., Kang, H. S., Ro, J., Kim, H. S., Yoon, S. 2009. SP600125, an Inhibitor of Jnk Pathway, Reduces Viability of Relatively Resistant Cancer Cells to Doxorubicin. Biochem. Biophys. Res. Commun., 387 (3), 450–455. https://doi.org/https://doi.org/10.1016/j.bbrc.2009.07.036.
  • [15] Liu, Y., Zhang, X., Wang, J., Yang, J., Tan, W. 2015. JNK Is Required for Maintaining the Tumor-Initiating Cell-like Properties of Acquired Chemoresistant Human Cancer Cells. Acta Pharmacol. Sin., 36 (9), 1099–1106. https://doi.org/10.1038/aps.2015.58.
  • [16] Zhu, M. M., Tong, J. L., Xu, Q., Nie, F., Xu, X. T., Xiao, S. D., Ran, Z. H. 2012. Increased JNK1 Signaling Pathway Is Responsible for ABCG2-Mediated Multidrug Resistance in Human Colon Cancer. PLoS One, 7 (8), e41763.
  • [17] Vasilevskaya, I. A., Selvakumaran, M., Roberts, D., O’Dwyer, P. J. 2016. JNK1 Inhibition Attenuates Hypoxia-Induced Autophagy and Sensitizes to Chemotherapy. Mol. Cancer Res., 14 (8), 753 LP – 763. https://doi.org/10.1158/1541-7786.MCR-16-0035.
  • [18] Wu, Q., Wu, W., Jacevic, V., Franca, T. C. C., Wang, X., Kuca, K. 2020. Selective Inhibitors for JNK Signalling: A Potential Targeted Therapy in Cancer. J. Enzyme Inhib. Med. Chem., 35 (1), 574–583. https://doi.org/10.1080/14756366.2020.1720013.
  • [19] Roskoski, R. 2019. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors. Pharmacol. Res., 144, 19–50. https://doi.org/https://doi.org/10.1016/j.phrs.2019.03.006.
  • [20] Berhanu, A. L., Gaurav, Mohiuddin, I., Malik, A. K., Aulakh, J. S., Kumar, V., Kim, K.-H. 2019. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC Trends Anal. Chem., 116, 74–91. https://doi.org/https://doi.org/10.1016/j.trac.2019.04.025.
  • [21] Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y., Zhao, X. 2017. A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biological Thiols. Sensors Actuators B Chem., 250, 132–138. https://doi.org/https://doi.org/10.1016/j.snb.2017.04.147.
  • [22] Kajal, A., Bala, S., Kamboj, S., Sharma, N., Saini, V. 2013. Schiff Bases: A Versatile Pharmacophore. J. Catal., 2013, 893512. https://doi.org/10.1155/2013/893512.
  • [23] Sıdır, İ., Sıdır, Y. G., Berber, H., Demiray, F. 2019. Electronic Structure and Optical Properties of Schiff Base Hydrazone Derivatives by Solution Technique for Optoelectronic Devices: Synthesis, Experiment and Quantum Chemical Investigation. J. Mol. Struct., 1176, 31–46. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.08.067.
  • [24] Sıdır, Y. G., Aslan, C., Berber, H., Sıdır, İ. 2019. The Electronic Structure, Solvatochromism, and Electric Dipole Moments of New Schiff Base Derivatives Using Absorbance and Fluorescence Spectra. Struct. Chem., 30 (3), 835–851. https://doi.org/10.1007/s11224-018-1228-8.
  • [25] Sıdır, Y. G., Pirbudak, G., Berber, H., Sıdır, İ. 2017. Study on the Electronic and Photophysical Properties of the Substitute-((2-Phenoxybenzylidene)Amino)Phenol Derivatives: Synthesis, Solvatochromism, Electric Dipole Moments and DFT Calculations. J. Mol. Liq., 242, 1096–1110. https://doi.org/https://doi.org/10.1016/j.molliq.2017.07.070.
  • [26] Gowda, A., Roy, A., Kumar, S. 2017. Synthesis and Mesomorphic Properties of Novel Schiff Base Liquid Crystalline EDOT Derivatives. J. Mol. Liq., 225, 840–847. https://doi.org/https://doi.org/10.1016/j.molliq.2016.11.010.
  • [27] Kausar, N., Muratza, S., Raza, M. A., Rafique, H., Arshad, M. N., Altaf, A. A., Asiri, A. M., Shafqat, S. S., Shafqat, S. R. 2019. Sulfonamide Hybrid Schiff Bases of Anthranilic Acid: Synthesis, Characterization and Their Biological Potential. J. Mol. Struct., 1185, 8–20. https://doi.org/https://doi.org/10.1016/j.molstruc.2019.02.056.
  • [28] Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H., Elmalı, A. 2016. Synthesis, Spectral and Quantum Chemical Studies and Use of (E)-3-[(3,5-Bis(Trifluoromethyl)Phenylimino)Methyl]Benzene-1,2-Diol and Its Ni(II) and Cu(II) Complexes as an Anion Sensor, DNA Binding, DNA Cleavage, Anti-Microbial, Anti-Mutagenic and Anti-Canc. J. Mol. Struct., 1125. https://doi.org/10.1016/j.molstruc.2016.06.058.
  • [29] Judith Percino, M., Cerón, M., Castro, M. E., Ramírez, R., Soriano, G., Chapela, V. M. 2015. (E)-2-[(2-Hydroxybenzylidene)Amino]Phenylarsonic Acid Schiff Base: Synthesis, Characterization and Theoretical Studies. J. Mol. Struct., 1081, 193–200. https://doi.org/https://doi.org/10.1016/j.molstruc.2014.10.030.
  • [30] Alpaslan, G., Boyacioglu, B., Demir, N., Tümer, Y., Yapar, G., Yıldırım, N., Yıldız, M., Ünver, H. 2019. Synthesis, Characterization, Biological Activity and Theoretical Studies of a 2-Amino-6-Methoxybenzothiazole-Based Fluorescent Schiff Base. J. Mol. Struct., 1180, 170–178. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.11.065.
  • [31] Cunha Almeida, T., Gonzaga Ribeiro, L. H., Ferreira dos Santos, L. B., da Silva, C. M., Tupinambá Branquinho, R., de Lana, M., Ramos Gadelha, F., de Fátima, Â. 2018. Synthesis, in Vitro and in Vivo Anti-Trypanosoma Cruzi and Toxicological Activities of Nitroaromatic Schiff Bases. Biomed. Pharmacother., 108, 1703–1711. https://doi.org/https://doi.org/10.1016/j.biopha.2018.09.176.
  • [32] Saadaoui, I., Krichen, F., Ben Salah, B., Ben Mansour, R., Miled, N., Bougatef, A., Kossentini, M. 2019. Design, Synthesis and Biological Evaluation of Schiff Bases of 4-Amino-1,2,4-Triazole Derivatives as Potent Angiotensin Converting Enzyme Inhibitors and Antioxidant Activities. J. Mol. Struct., 1180, 344–354. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.12.008.
  • [33] Zaltariov, M.-F., Avadanei, M., Balan, M., Peptanariu, D., Vornicu, N., Shova, S. 2019. Synthesis, Structural Characterization and Biological Studies of New Schiff Bases Containing Trimethylsilyl Groups. J. Mol. Struct., 1175, 624–631. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.08.019.
  • [34] Al-Shemary, R. K. R., Al-khazraji, A. M. A., Niseaf, A. N. 2016. Preparation, Spectroscopic Study of Schiff Base Ligand Complexes with Some Metal Ions and Evaluation of Antibacterial Activity. Pharma Innov. J., 5, 81–86.
  • [35] Heo, Y.-S., Kim, S.-K., Seo, C. Il, Kim, Y. K., Sung, B.-J., Lee, H. S., Lee, J. Il, Park, S.-Y., Kim, J. H., Hwang, K. Y., Hyun, Y.-L., Jeon, Y. H., Ro, S., Cho, J. M., Lee, T. G., Yang, C.-H. 2004. Structural Basis for the Selective Inhibition of JNK1 by the Scaffolding Protein JIP1 and SP600125. EMBO J., 23 (11), 2185–2195. https://doi.org/10.1038/sj.emboj.7600212.
  • [36] Chamberlain, S. D., Redman, A. M., Wilson, J. W., Deanda, F., Shotwell, J. B., Gerding, R., Lei, H., Yang, B., Stevens, K. L., Hassell, A. M., Shewchuk, L. M., Leesnitzer, M. A., Smith, J. L., Sabbatini, P., Atkins, C., Groy, A., Rowand, J. L., Kumar, R., Mook, R. A., Moorthy, G., Patnaik, S. 2009. Optimization of 4,6-Bis-Anilino-1H-Pyrrolo[2,3-d]Pyrimidine IGF-1R Tyrosine Kinase Inhibitors towards JNK Selectivity. Bioorg. Med. Chem. Lett., 19 (2), 360–364. https://doi.org/https://doi.org/10.1016/j.bmcl.2008.11.077.
  • [37] Bennett, B. L., Sasaki, D. T., Murray, B. W., O’Leary, E. C., Sakata, S. T., Xu, W., Leisten, J. C., Motiwala, A., Pierce, S., Satoh, Y., Bhagwat, S. S., Manning, A. M., Anderson, D. W. 2001. SP600125, an Anthrapyrazolone Inhibitor of Jun N-Terminal Kinase. Proc. Natl. Acad. Sci., 98 (24), 13681–13686. https://doi.org/10.1073/pnas.251194298.
  • [38] Li, P., Zhao, Q.-L., Rehman, M., Jawaid, P., Cui, Z.-G., Ahmed, K., Kondo, T., Saitoh, J.-I., Noguchi, K. 2023. Isofraxidin Enhances Hyperthermia‑induced Apoptosis via Redox Modification in Acute Monocytic Leukemia U937 Cells. Mol. Med. Rep., 27 (2), 41. https://doi.org/10.3892/mmr.2023.12928.
  • [39] Yuan, M.-K., Kao, J.-W., Wu, W.-T., Chen, C.-R., Chang, C.-I., Wu, Y.-J. 2022. Investigation of Cell Cytotoxic Activity and Molecular Mechanism of 5β,19-Epoxycucurbita-6,23( E )-Diene-3β,19( R ),25-Triol Isolated from Momordica Charantia on Hepatoma Cells. Pharm. Biol., 60 (1), 1214–1223. https://doi.org/10.1080/13880209.2022.2077766.
  • [40] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V, Cioslowski, J., Fox, D. J. Gaussian 09 Revision A.2. 2009.
  • [41] Dennington, R., Keith, T., Millam, J. GaussView. Semichem Inc.: Shawnee Mission, KS 2009.
  • [42] CS ChemBioDraw Ultra 16.0.1.4 for Microsoft Windows.
  • [43] MarvinSketch 19.27.0.
  • [44] Kuete, V., Ngnintedo, D., Fotso, G. W., Karaosmanoğlu, O., Ngadjui, B. T., Keumedjio, F., Yeboah, S. O., Andrae-Marobela, K., Sivas, H. 2018. Cytotoxicity of Seputhecarpan D, Thonningiol and 12 Other Phytochemicals from African Flora towards Human Carcinoma Cells. BMC Complement. Altern. Med., 18 (1), 36. https://doi.org/10.1186/s12906-018-2109-9.
  • [45] Daina, A., Michielin, O., Zoete, V. 2017. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep., 7 (1), 42717. https://doi.org/10.1038/srep42717.
  • [46] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., Olson, A. J. 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem., 30 (16), 2785–2791. https://doi.org/10.1002/jcc.21256.
  • [47] Trott, O., Olson, A. J. 2010. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem., 31 (2), 455–461. https://doi.org/10.1002/jcc.21334.
  • [48] L DeLano, W. 2002. Pymol: An Open-Source Molecular Graphics Tool. {CCP4} Newsl. Protein Crystallogr., 40, 82–92.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlığın Geliştirilmesi
Bölüm Araştırma Makaleleri
Yazarlar

Oğuzhan Karaosmanoğlu 0000-0003-2028-7339

Halil Berber 0000-0003-3869-3861

Ülkü Dilek Uysal 0000-0003-1572-9753

Proje Numarası 1509F633, 20ADP182 and 1102F027, 1304F064
Yayımlanma Tarihi 15 Ağustos 2023
Gönderilme Tarihi 6 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

Vancouver Karaosmanoğlu O, Berber H, Uysal ÜD. Synthesis, Theoretical Studies, Cytotoxicity of 2-((4-(Dimethylamino)Benzylidene)Amino)-5-Methylphenol with Potential JNK1 Inhibitory Activity. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2023;14(2):253-72.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.