Research Article
BibTex RIS Cite

Echinacea purpurea Ekstraktı ile Sentezlenen Biyojenik Çinko Oksit Nanopartiküllerin İn Vitro Biyolojik Aktivitelerinin Değerlendirilmesi

Year 2025, Volume: 16 Issue: 3, 374 - 385, 22.12.2025
https://doi.org/10.22312/sdusbed.1677233

Abstract

Bu çalışmada, çeşitli biyomedikal uygulamalar için kolay, ekonomik ve çevreye duyarlı bir yöntemle çinko oksit nanopartikül (ZnO NP) sentezi gerçekleştirilmiştir. Biyojenik ZnO NP’ler, etkili bir indirgeyici ve kaplayıcı ajan olarak ekinezya (Echinacea purpurea) bitki özütü kullanılarak sentezlenmiştir. ZnO NP'lerin karakterizasyonu için UV-Görünür bölge spektrofotometresi, taramalı elektron mikroskobu (SEM), enerji dağılım X-ışını spektrometresi (EDX) ve X-Işını difraktometresi (XRD) kullanılmıştır. UV-Görünür bölge spektrumundaki 363 nm dalga boyundaki spesifik pik ve XRD sonuçlarındaki spesifik pikler ZnO NP’lerin sentezini doğrulamıştır. Ayrıca SEM görüntüsü ve XRD sonucu tanecik boyutu hesaplamaları partikülün nano boyutta olduğunu doğrulamıştır. Karakterize edilen ZnO NP’ler daha sonra antioksidan ve antibakteriyel potansiyelleri açısından araştırılmıştır. Antioksidan aktivite için 2,2-Difenil-1-pikrilhidrazil (DPPH) ve 2,2’-azino-bis (3-etil-benztiyoazolin-6-sülfonikasit) (ABTS) testleri kullanılmıştır. ZnO NP’ler DPPH radikaline karşı 2,046 mg/mL ve ABTS radikaline karşı 3,294 mg/mL IC50 değerleri ile belirgin antioksidan aktivite göstermiştir. ZnO NP’lerin antibakteriyel etkisi Escherichia coli (E. coli), Salmonella Enteritidis (S. enteritidis), Listeria monocytogenes (L. monocytogenes) ve Staphylococcus aureus (S. aureus) olmak üzere dört farklı bakteri türü için mikrodilüsyon tekniği ile incelenmiştir. Elde edilen sonuçlar, ZnO NP’lerin bakteri türleri üzerinde doza bağımlı antibakteriye etki gösterdiğini tespit etmiştir. E. coli için minimum inhibitör konsantrasyon (MİK) değeri 131,8 µg/mL, S. enteritidis için 90,98 µg/mL, L. monocytogenes için 70,51 µg/mL ve S. aureus için 130,4 µg/mL olarak hesaplanmıştır. Sonuç olarak, ekinezya aracılığıyla elde edilen biyojenik ZnO NP’ler, güçlü antioksidan ve antibakteriyel özellikleriyle biyomedikal uygulamalar için umut vadeden imkanlar sunmaktadır.

References

  • 1. Malik AR, Sharif S, Shaheen F, Khalid M, Iqbal Y, Faisal A, et al. Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J Saudi Chem Soc. 2022;26(2):101438. https://doi.org/10.1016/j.jscs.2022.101438
  • 2. Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules. 2015;20(9):16540-65. https://doi.org/10.3390/molecules200916540
  • 3. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545-60. https://doi.org/10.1007/s10529-015-2026-7
  • 4. Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells, Nanomed, Biotechnol. 2019;47(1):844-51. https://doi.org/10.1080/21691401.2019.1577878
  • 5. Gebre SH. Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J Cluster Sci. 2023;34(2):665-704. https://doi.org/10.1007/s10876-022-02276-9
  • 6. Stephen A, Seethalakshmi S. Phytochemical Synthesis and Preliminary Characterization of Silver Nanoparticles Using Hesperidin. J Nanosci. 2013;2013(1):126564. https://doi.org/10.1155/2013/126564
  • 7. Nandhini J, Karthikeyan E, Rajeshkumar S. "Green synthesis of zinc oxide nanoparticles: Eco-friendly advancements for biomedical marvels". Resour Chem Mater. 2024;3(4):294-316. https://doi.org/10.1016/j.recm.2024.05.001
  • 8. Aydin Acar C, Gencer MA, Pehlivanoglu S, Yesilot S, Donmez S. Green and eco-friendly biosynthesis of zinc oxide nanoparticles using Calendula officinalis flower extract: Wound healing potential and antioxidant activity. Int Wound J. 2024;21(1):e14413. https://doi.org/10.1111/iwj.14413
  • 9. Chawla U, Dahiya D, Kumar Y, Bala A, Genwa M, Agasti N, et al. A Review on ZnO-based Targeted Drug Delivery System. Lett Drug Des Discov. 2024;21(3):397-420. https://doi.org/10.2174/1570180820666230222092950
  • 10. Xiong HM. ZnO Nanoparticles Applied to Bioimaging and Drug Delivery. Adv Mater. 2013;25(37):5329-35. https://doi.org/10.1002/adma.201301732
  • 11. Al-Radadi NS, Abdullah, Faisal S, Alotaibi A, Ullah R, Hussain T, et al. Zingeber officinale driven bioproduction of ZnO nanoparticles and their anti-inflammatory, anti-diabetic, anti-Alzheimer, anti-oxidant, and anti-microbial applications. Inorg Chem Commun. 2022;140. https://doi.org/10.1016/j.inoche.2022.109274
  • 12. Jalil PJ, Mhamedsharif RM, Shnawa BH, Hamad SM, Aspoukeh P, Wsu KW, et al. Biosynthesis of ZnO Nanoparticles Using Washingtonia filifera Seed Extract and Assessment of Their Anti-Inflammatory and Antimicrobial Efficacy. J Cluster Sci. 2024;36(1):31. https://doi.org/10.1007/s10876-024-02761-3
  • 13. Agarwal H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour-Effic Technol. 2017;3(4):406-13. https://doi.org/10.1016/j.reffit.2017.03.002
  • 14. Rashidian G, Lazado CC, Mahboub HH, Mohammadi-Aloucheh R, Prokić MD, Nada HS, et al. Chemically and Green Synthesized ZnO Nanoparticles Alter Key Immunological Molecules in Common Carp (Cyprinus carpio) Skin Mucus. Int J Mol Sci. 2021;22(6):3270. https://doi.org/10.3390/ijms22063270
  • 15. Manayi A, Vazirian M, Saeidnia S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn Rev. 2015;9(17):63-72. https://doi.org/10.4103/0973-7847.156353
  • 16. Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules. 2018;23(11):2778.
  • 17. Matei A, Craciun G, Romanitan C, Pachiu C, Tucureanu V. Biosynthesis and Characterization of Copper Oxide Nanoparticles. Engineering Proceedings. 2023;37(1):54. https://doi.org/10.3390/ECP2023-14629
  • 18. Aydın Acar Ç, Sarı BR. Phytofabrication of Selenium-Silver Bimetallic Nanoparticles Using Echinacea purpurea Extract: Characterization and Antioxidant Activity. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2024;15(2):198-208. https://doi.org/10.22312/sdusbed.1491658
  • 19. Karacalı Tunç A, Sarıtaş BM, Erenler R. Antibacterial and Anti-Biofilm Effect of Silver Nanoparticles Synthesized from Origanum majorana and Echinacea purpurea (L.) Moench Plants via Green Synthesis. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi. 2024;10(2):48-52. https://doi.org/10.30934/kusbed.1389670
  • 20. Dobrucka R. Synthesis of Titanium Dioxide Nanoparticles Using Echinacea purpurea Herba. Iran J Pharm Res. 2017;16(2):756-62.
  • 21. Tran XT, Bien TTL, Tran TV, Nguyen TTT. Biosynthesis of ZnO nanoparticles using aqueous extracts of Eclipta prostrata and Piper longum: characterization and assessment of their antioxidant, antibacterial, and photocatalytic properties. Nanoscale Adv. 2024;6(19):4885-99. https://doi.org/10.1039/D4NA00326H
  • 22. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 26 ed. Pennsylvania, USA M100S,2016.
  • 23. Keyvan E, Tutun H. Effects of carvacrol on Staphylococcus aureus isolated from bulk tank milk. Med Weter. 2019;75(4):238-41. https://doi.org/10.21521/mw.6211
  • 24. Kang M-S, Oh J-S, Kang I-C, Hong S-J, Choi C-H. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol. 2008;46(6):744-50. https://doi.org/10.1007/s12275-008-0235-7
  • 25. Al-Mohaimeed AM, Al-Onazi WA, El-Tohamy MF. Multifunctional Eco-Friendly Synthesis of ZnO Nanoparticles in Biomedical Applications. Molecules. 2022;27(2):579. https://doi.org/10.3390/molecules27020579
  • 26. Hameed H, Waheed A, Sharif MS, Saleem M, Afreen A, Tariq M, et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles from Green Algae and Their Assessment in Various Biological Applications. Micromachines. 2023;14(5):928. https://doi.org/10.3390/mi14050928
  • 27. Iqbal Y, Raouf Malik A, Iqbal T, Hammad Aziz M, Ahmed F, Abolaban FA, et al. Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater Lett. 2021;305:130671. https://doi.org/10.1016/j.matlet.2021.130671
  • 28. Raoufi D. Synthesis and photoluminescence characterization of ZnO nanoparticles. J Lumin. 2013;134:213-9. https://doi.org/10.1016/j.jlumin.2012.08.045
  • 29. Raza A, Malan P, Ahmad I, Khan A, Haris M, Zahid Z, et al. Polyalthia longifolia-mediated green synthesis of zinc oxide nanoparticles: characterization, photocatalytic and antifungal activities. Rsc Adv. 2024;14(25):17535-46. https://doi.org/10.1039/D4RA01035C
  • 30. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70. https://doi.org/10.1016/j.jsps.2017.10.012
  • 31. Halarnekar D, Ayyanar M, Gangapriya P, Kalaskar M, Redasani V, Gurav N, et al. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int J Biol Macromol. 2023;242:124764. https://doi.org/10.1016/j.ijbiomac.2023.124764
  • 32. Das D, Nath BC, Phukon P, kalita A, Dolui SK. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B Biointerfaces. 2013;111:556-60. https://doi.org/10.1016/j.colsurfb.2013.06.041
  • 33. Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM. Antioxidant and Anti-inflammatory Applications of Aerva persica Aqueous-Root Extract-Mediated Synthesis of ZnO Nanoparticles. ACS Omega. 2024;9(14):15882-92. https://doi.org/10.1021/acsomega.3c08143
  • 34. Naiel B, Fawzy M, Halmy MWA, Mahmoud AED. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep. 2022;12(1):20370. https://doi.org/10.1038/s41598-022-24805-2
  • 35. Krishnan BR, Ramesh M, Selvakumar M, Karthick S, Sasikumar A, Geerthi DV, et al. A Facile Green Approach of Cone-like ZnO NSs Synthesized Via Jatropha gossypifolia Leaves Extract for Photocatalytic and Biological Activity. J Inorg Organomet Polym Mater. 2020;30(11):4441-51. https://doi.org/10.1007/s10904-020-01576-9
  • 36. Alamri AA, Alanazi NAH, Mashlawi AM, Shommo SAM, Akeel MA, Alhejely A, et al. Chemical Composition of Anabasis articulata, and Biological Activity of Greenly Synthesized Zinc Oxide Composite Nanoparticles (Zn-NPs): Antioxidant, Anticancer, and Larvicidal Activities. Agronomy. 2024;14(8):1742. https://doi.org/10.3390/agronomy14081742
  • 37. Suresh D, Shobharani RM, Nethravathi PC, Pavan Kumar MA, Nagabhushana H, Sharma SC. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochim Acta Part A. 2015;141:128-34. https://doi.org/10.1016/j.saa.2015.01.048
  • 38. Leta TB, Adeyemi JO, Fawole OA. Valorisation of pomegranate processing waste for the synthesis of ZnO nanoparticles: antioxidant and antimicrobial properties against food pathogens. Mater Res Express. 2023;10(11):115401. https://doi.org/10.1088/2053-1591/ad0ac6
  • 39. Brighente IMC, M. D, G. VL, and Pizzolatti MG. Antioxidant Activity and Total Phenolic Content of Some Brazilian Species. Pharm Biol. 2007;45(2):156-61. https://doi.org/10.1080/13880200601113131
  • 40. Jasprica I, Bojic M, Mornar A, Besic E, Bucan K, Medic-Saric M. Evaluation of Antioxidative Activity of Croatian Propolis Samples Using DPPH? and ABTS?+ Stable Free Radical Assays. Molecules. 2007;12(5):1006-21. https://doi.org/10.3390/12051006
  • 41. Senthilkumar N, Nandhakumar E, Priya P, Soni D, Vimalan M, Vetha Potheher I. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J Chem. 2017;41(18):10347-56. https://doi.org/10.1039/C7NJ02664A
  • 42. Siddiquah A, Hashmi SS, Mushtaq S, Renouard S, Blondeau JP, Abbasi R, et al. Exploiting in vitro potential and characterization of surface modified Zinc oxide nanoparticles of Isodon rugosus extract: Their clinical potential towards HepG2 cell line and human pathogenic bacteria. EXCLI journal. 2018;17:671. https://doi.org/10.17179/excli2018-1327
  • 43. Ifeanyichukwu UL, Fayemi OE, Ateba CN. Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate (Punica granatum) Extracts and Characterization of Their Antibacterial Activity. Molecules. 2020;25(19):4521. https://doi.org/10.3390/molecules25194521
  • 44. Mahendra C, Murali M, Manasa G, Ponnamma P, Abhilash MR, Lakshmeesha TR, et al. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb Pathog. 2017;110:620-9. https://doi.org/10.1016/j.micpath.2017.07.051
  • 45. Unni V, Abishad P, Prasastha Ram V, Niveditha P, Yasur J, John L, et al. Green synthesis, and characterization of zinc oxide nanoparticles using Piper longum catkin extract and its in vitro antimicrobial activity against multi-drug-resistant non-typhoidal Salmonella spp. Inorg Nano-Met Chem. 2024;54(9):849-57. https://doi.org/10.1080/24701556.2022.2078356
  • 46. Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Maleki M, Azizi-Lalabadi M, Bagheri V, et al. Kinetics Analysis and Susceptibility Coefficient of the Pathogenic Bacteria by Titanium Dioxide and Zinc Oxide Nanoparticles. Adv Pharm Bull. 2020;10(1):56-64. https://doi.org/10.15171/apb.2020.007
  • 47. Padmavathy N, and Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008;9(3):035004. https://doi.org/10.1088/1468-6996/9/3/035004
  • 48. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325-31. https://doi.org/10.1128/aem.02149-10
  • 49. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano. 2008;2(10):2121-34. https://doi.org/10.1021/nn800511k
  • 50. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015;7(3):219-42. https://doi.org/10.1007/s40820-015-0040-x
  • 51. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3(7):643-6. https://doi.org/10.1016/S1466-6049(01)00197-0
  • 52. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluids: Green synthesis, characterization, and antibacterial activity. Mater Chem Phys. 2010;121(1):198-201. https://doi.org/10.1016/j.matchemphys.2010.01.020

In Vitro Antioxidant and Antibacterial Activities of Biogenically Synthesized Zinc Oxide Nanoparticles Using Echinacea purpurea Extract

Year 2025, Volume: 16 Issue: 3, 374 - 385, 22.12.2025
https://doi.org/10.22312/sdusbed.1677233

Abstract

This research presents the zinc oxide nanoparticles (ZnO NPs) through a straightforward, economical, and environmentally sustainable approach tailored for biomedical applications. The nanoparticles were biogenically fabricated using Echinacea purpurea extract, which served as an efficient reducing and capping agent. Comprehensive characterization was conducted via ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). An absorption band near at 363 nm in the UV-Vis spectrum, alongside distinct diffraction peaks in the XRD patterns, verified the successful formation of the ZnO NPs. SEM imaging and crystallite size analysis from XRD data further confirmed their nanoscale dimensions. The synthesized ZnO NPs were subsequently assessed for their antioxidant and antimicrobial efficacy. Antioxidant performance was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging assays, yielding IC50 values of 2.046 mg/mL and 3.294 mg/mL, respectively. The antimicrobial potential was examined against four pathogenic bacteria—Escherichia coli, Salmonella Enteritidis, Listeria monocytogenes, and Staphylococcus aureus—using a broth microdilution method. The findings indicated a concentration-dependent inhibitory effect, with minimum inhibitory concentrations (MICs) calculated as 131.8 µg/mL, 90.98 µg/mL, 70.51 µg/mL, and 130.4 µg/mL for the respective strains. In conclusion, the study highlights that ZnO NPs synthesized using Echinacea purpurea extract possess substantial bioactivity, indicating their potential utility in future biomedical fields due to their pronounced antioxidant and antibacterial functionalities.

References

  • 1. Malik AR, Sharif S, Shaheen F, Khalid M, Iqbal Y, Faisal A, et al. Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J Saudi Chem Soc. 2022;26(2):101438. https://doi.org/10.1016/j.jscs.2022.101438
  • 2. Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules. 2015;20(9):16540-65. https://doi.org/10.3390/molecules200916540
  • 3. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545-60. https://doi.org/10.1007/s10529-015-2026-7
  • 4. Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells, Nanomed, Biotechnol. 2019;47(1):844-51. https://doi.org/10.1080/21691401.2019.1577878
  • 5. Gebre SH. Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J Cluster Sci. 2023;34(2):665-704. https://doi.org/10.1007/s10876-022-02276-9
  • 6. Stephen A, Seethalakshmi S. Phytochemical Synthesis and Preliminary Characterization of Silver Nanoparticles Using Hesperidin. J Nanosci. 2013;2013(1):126564. https://doi.org/10.1155/2013/126564
  • 7. Nandhini J, Karthikeyan E, Rajeshkumar S. "Green synthesis of zinc oxide nanoparticles: Eco-friendly advancements for biomedical marvels". Resour Chem Mater. 2024;3(4):294-316. https://doi.org/10.1016/j.recm.2024.05.001
  • 8. Aydin Acar C, Gencer MA, Pehlivanoglu S, Yesilot S, Donmez S. Green and eco-friendly biosynthesis of zinc oxide nanoparticles using Calendula officinalis flower extract: Wound healing potential and antioxidant activity. Int Wound J. 2024;21(1):e14413. https://doi.org/10.1111/iwj.14413
  • 9. Chawla U, Dahiya D, Kumar Y, Bala A, Genwa M, Agasti N, et al. A Review on ZnO-based Targeted Drug Delivery System. Lett Drug Des Discov. 2024;21(3):397-420. https://doi.org/10.2174/1570180820666230222092950
  • 10. Xiong HM. ZnO Nanoparticles Applied to Bioimaging and Drug Delivery. Adv Mater. 2013;25(37):5329-35. https://doi.org/10.1002/adma.201301732
  • 11. Al-Radadi NS, Abdullah, Faisal S, Alotaibi A, Ullah R, Hussain T, et al. Zingeber officinale driven bioproduction of ZnO nanoparticles and their anti-inflammatory, anti-diabetic, anti-Alzheimer, anti-oxidant, and anti-microbial applications. Inorg Chem Commun. 2022;140. https://doi.org/10.1016/j.inoche.2022.109274
  • 12. Jalil PJ, Mhamedsharif RM, Shnawa BH, Hamad SM, Aspoukeh P, Wsu KW, et al. Biosynthesis of ZnO Nanoparticles Using Washingtonia filifera Seed Extract and Assessment of Their Anti-Inflammatory and Antimicrobial Efficacy. J Cluster Sci. 2024;36(1):31. https://doi.org/10.1007/s10876-024-02761-3
  • 13. Agarwal H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour-Effic Technol. 2017;3(4):406-13. https://doi.org/10.1016/j.reffit.2017.03.002
  • 14. Rashidian G, Lazado CC, Mahboub HH, Mohammadi-Aloucheh R, Prokić MD, Nada HS, et al. Chemically and Green Synthesized ZnO Nanoparticles Alter Key Immunological Molecules in Common Carp (Cyprinus carpio) Skin Mucus. Int J Mol Sci. 2021;22(6):3270. https://doi.org/10.3390/ijms22063270
  • 15. Manayi A, Vazirian M, Saeidnia S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn Rev. 2015;9(17):63-72. https://doi.org/10.4103/0973-7847.156353
  • 16. Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules. 2018;23(11):2778.
  • 17. Matei A, Craciun G, Romanitan C, Pachiu C, Tucureanu V. Biosynthesis and Characterization of Copper Oxide Nanoparticles. Engineering Proceedings. 2023;37(1):54. https://doi.org/10.3390/ECP2023-14629
  • 18. Aydın Acar Ç, Sarı BR. Phytofabrication of Selenium-Silver Bimetallic Nanoparticles Using Echinacea purpurea Extract: Characterization and Antioxidant Activity. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2024;15(2):198-208. https://doi.org/10.22312/sdusbed.1491658
  • 19. Karacalı Tunç A, Sarıtaş BM, Erenler R. Antibacterial and Anti-Biofilm Effect of Silver Nanoparticles Synthesized from Origanum majorana and Echinacea purpurea (L.) Moench Plants via Green Synthesis. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi. 2024;10(2):48-52. https://doi.org/10.30934/kusbed.1389670
  • 20. Dobrucka R. Synthesis of Titanium Dioxide Nanoparticles Using Echinacea purpurea Herba. Iran J Pharm Res. 2017;16(2):756-62.
  • 21. Tran XT, Bien TTL, Tran TV, Nguyen TTT. Biosynthesis of ZnO nanoparticles using aqueous extracts of Eclipta prostrata and Piper longum: characterization and assessment of their antioxidant, antibacterial, and photocatalytic properties. Nanoscale Adv. 2024;6(19):4885-99. https://doi.org/10.1039/D4NA00326H
  • 22. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 26 ed. Pennsylvania, USA M100S,2016.
  • 23. Keyvan E, Tutun H. Effects of carvacrol on Staphylococcus aureus isolated from bulk tank milk. Med Weter. 2019;75(4):238-41. https://doi.org/10.21521/mw.6211
  • 24. Kang M-S, Oh J-S, Kang I-C, Hong S-J, Choi C-H. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol. 2008;46(6):744-50. https://doi.org/10.1007/s12275-008-0235-7
  • 25. Al-Mohaimeed AM, Al-Onazi WA, El-Tohamy MF. Multifunctional Eco-Friendly Synthesis of ZnO Nanoparticles in Biomedical Applications. Molecules. 2022;27(2):579. https://doi.org/10.3390/molecules27020579
  • 26. Hameed H, Waheed A, Sharif MS, Saleem M, Afreen A, Tariq M, et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles from Green Algae and Their Assessment in Various Biological Applications. Micromachines. 2023;14(5):928. https://doi.org/10.3390/mi14050928
  • 27. Iqbal Y, Raouf Malik A, Iqbal T, Hammad Aziz M, Ahmed F, Abolaban FA, et al. Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater Lett. 2021;305:130671. https://doi.org/10.1016/j.matlet.2021.130671
  • 28. Raoufi D. Synthesis and photoluminescence characterization of ZnO nanoparticles. J Lumin. 2013;134:213-9. https://doi.org/10.1016/j.jlumin.2012.08.045
  • 29. Raza A, Malan P, Ahmad I, Khan A, Haris M, Zahid Z, et al. Polyalthia longifolia-mediated green synthesis of zinc oxide nanoparticles: characterization, photocatalytic and antifungal activities. Rsc Adv. 2024;14(25):17535-46. https://doi.org/10.1039/D4RA01035C
  • 30. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70. https://doi.org/10.1016/j.jsps.2017.10.012
  • 31. Halarnekar D, Ayyanar M, Gangapriya P, Kalaskar M, Redasani V, Gurav N, et al. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int J Biol Macromol. 2023;242:124764. https://doi.org/10.1016/j.ijbiomac.2023.124764
  • 32. Das D, Nath BC, Phukon P, kalita A, Dolui SK. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B Biointerfaces. 2013;111:556-60. https://doi.org/10.1016/j.colsurfb.2013.06.041
  • 33. Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM. Antioxidant and Anti-inflammatory Applications of Aerva persica Aqueous-Root Extract-Mediated Synthesis of ZnO Nanoparticles. ACS Omega. 2024;9(14):15882-92. https://doi.org/10.1021/acsomega.3c08143
  • 34. Naiel B, Fawzy M, Halmy MWA, Mahmoud AED. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep. 2022;12(1):20370. https://doi.org/10.1038/s41598-022-24805-2
  • 35. Krishnan BR, Ramesh M, Selvakumar M, Karthick S, Sasikumar A, Geerthi DV, et al. A Facile Green Approach of Cone-like ZnO NSs Synthesized Via Jatropha gossypifolia Leaves Extract for Photocatalytic and Biological Activity. J Inorg Organomet Polym Mater. 2020;30(11):4441-51. https://doi.org/10.1007/s10904-020-01576-9
  • 36. Alamri AA, Alanazi NAH, Mashlawi AM, Shommo SAM, Akeel MA, Alhejely A, et al. Chemical Composition of Anabasis articulata, and Biological Activity of Greenly Synthesized Zinc Oxide Composite Nanoparticles (Zn-NPs): Antioxidant, Anticancer, and Larvicidal Activities. Agronomy. 2024;14(8):1742. https://doi.org/10.3390/agronomy14081742
  • 37. Suresh D, Shobharani RM, Nethravathi PC, Pavan Kumar MA, Nagabhushana H, Sharma SC. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochim Acta Part A. 2015;141:128-34. https://doi.org/10.1016/j.saa.2015.01.048
  • 38. Leta TB, Adeyemi JO, Fawole OA. Valorisation of pomegranate processing waste for the synthesis of ZnO nanoparticles: antioxidant and antimicrobial properties against food pathogens. Mater Res Express. 2023;10(11):115401. https://doi.org/10.1088/2053-1591/ad0ac6
  • 39. Brighente IMC, M. D, G. VL, and Pizzolatti MG. Antioxidant Activity and Total Phenolic Content of Some Brazilian Species. Pharm Biol. 2007;45(2):156-61. https://doi.org/10.1080/13880200601113131
  • 40. Jasprica I, Bojic M, Mornar A, Besic E, Bucan K, Medic-Saric M. Evaluation of Antioxidative Activity of Croatian Propolis Samples Using DPPH? and ABTS?+ Stable Free Radical Assays. Molecules. 2007;12(5):1006-21. https://doi.org/10.3390/12051006
  • 41. Senthilkumar N, Nandhakumar E, Priya P, Soni D, Vimalan M, Vetha Potheher I. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J Chem. 2017;41(18):10347-56. https://doi.org/10.1039/C7NJ02664A
  • 42. Siddiquah A, Hashmi SS, Mushtaq S, Renouard S, Blondeau JP, Abbasi R, et al. Exploiting in vitro potential and characterization of surface modified Zinc oxide nanoparticles of Isodon rugosus extract: Their clinical potential towards HepG2 cell line and human pathogenic bacteria. EXCLI journal. 2018;17:671. https://doi.org/10.17179/excli2018-1327
  • 43. Ifeanyichukwu UL, Fayemi OE, Ateba CN. Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate (Punica granatum) Extracts and Characterization of Their Antibacterial Activity. Molecules. 2020;25(19):4521. https://doi.org/10.3390/molecules25194521
  • 44. Mahendra C, Murali M, Manasa G, Ponnamma P, Abhilash MR, Lakshmeesha TR, et al. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb Pathog. 2017;110:620-9. https://doi.org/10.1016/j.micpath.2017.07.051
  • 45. Unni V, Abishad P, Prasastha Ram V, Niveditha P, Yasur J, John L, et al. Green synthesis, and characterization of zinc oxide nanoparticles using Piper longum catkin extract and its in vitro antimicrobial activity against multi-drug-resistant non-typhoidal Salmonella spp. Inorg Nano-Met Chem. 2024;54(9):849-57. https://doi.org/10.1080/24701556.2022.2078356
  • 46. Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Maleki M, Azizi-Lalabadi M, Bagheri V, et al. Kinetics Analysis and Susceptibility Coefficient of the Pathogenic Bacteria by Titanium Dioxide and Zinc Oxide Nanoparticles. Adv Pharm Bull. 2020;10(1):56-64. https://doi.org/10.15171/apb.2020.007
  • 47. Padmavathy N, and Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008;9(3):035004. https://doi.org/10.1088/1468-6996/9/3/035004
  • 48. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325-31. https://doi.org/10.1128/aem.02149-10
  • 49. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano. 2008;2(10):2121-34. https://doi.org/10.1021/nn800511k
  • 50. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015;7(3):219-42. https://doi.org/10.1007/s40820-015-0040-x
  • 51. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3(7):643-6. https://doi.org/10.1016/S1466-6049(01)00197-0
  • 52. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluids: Green synthesis, characterization, and antibacterial activity. Mater Chem Phys. 2010;121(1):198-201. https://doi.org/10.1016/j.matchemphys.2010.01.020
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Medical Biotechnology (Other)
Journal Section Research Article
Authors

Soner Dönmez 0000-0003-0328-6481

Submission Date April 30, 2025
Acceptance Date August 24, 2025
Publication Date December 22, 2025
Published in Issue Year 2025 Volume: 16 Issue: 3

Cite

Vancouver Dönmez S. Echinacea purpurea Ekstraktı ile Sentezlenen Biyojenik Çinko Oksit Nanopartiküllerin İn Vitro Biyolojik Aktivitelerinin Değerlendirilmesi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2025;16(3):374-85.