Araştırma Makalesi
BibTex RIS Kaynak Göster

2.45 gigahertz elektromanyetik radyasyonun böbrekteki histopatolojik etkileri ve C vitamininin koruyucu etkisi

Yıl 2018, Cilt: 9 Sayı: 4, 1 - 5, 25.12.2018
https://doi.org/10.22312/sdusbed.479744

Öz

Amaçlar: Elektromanyetik radyasyonun (EMR) sıçan böbreğinde yol
açtığı histopatolojik hasarı ve C vitamininin (askorbik asit) oluşan bu renal
hasara karşı iyileştirici etkilerini araştırmak.

Gereç ve Yöntemler: On sekiz dişi Sprague-Dawley sıçanı, her biri altı
sıçan olmak üzere üç gruba ayrıldı.
Grup 1 şam grubuydu; bu sıçanlar herhangi bir stres
veya elektromanyetik radyasyona maruz kalmadan kafeslerinde tutuldu. Grup 2, 30
gün boyunca 2.45 gigahertz elektromanyetik radyasyona maruz bırakıldı. Grup 3
de 30 gün boyunca (günde 1 saat) 2.45 gigahertz elektromanyetik radyasyona
maruz bırakıldı, ancak ilk maruziyetinden 24 saat önce ve deney boyunca her gün
C vitamini verildi. Tüm sıçanlara histopatolojik inceleme için nefrektomi
yapıldı.

Bulgular: Şam grubunda herhangi bir patolojik değişiklik olmadı.
Grup 2’de tübüler ve glomerüler hasarı içeren önemli patolojik değişiklikler
izlendi (P<0.05). İnterstisyel ve vasküler hasar açısından grup 2 ve 3’te
önemli bir değişiklik izlenmedi (P>0.05). Tübüler ve glomerüler hasar grup
3’te grup 2’ye göre daha az şiddetliydi (P<0.05). Şam grubu ve grup 3
arasında tübüler, glomerüler, interstisyel ve vasküler hasar açısından önemli
bir farklılık izlenmedi (P>0.05).







Sonuç: Elektromanyetik radyasyonun böbrekte yol açtığı
tübüler ve glomerüler hasar, elektromanyetik radyasyon maruziyeti öncesi alınan
C vitamini ile neredeyse tamamen normale dönmektedir.

Kaynakça

  • 1. Kheifets L, Afifi AA, Shimkhada R. Public health impact of extremely low-frequency electromagnetic fields. Environmental health perspectives. 2006;114(10):1532-7.
  • 2. Li M, Wang Y, Zhang Y, Zhou Z, Yu Z. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. Journal of radiation research. 2008;49(2):163-70.
  • 3. Almasiova V, Holovska K, Cigankova V, Racekova E, Fabianova K, Martoncikova M. Structural and ultrastructural study of rat testes influenced by electromagnetic radiation. Journal of toxicology and environmental health Part A. 2014;77(13):747-50.
  • 4. Devrim E, Erguder IB, Kilicoglu B, Yaykasli E, Cetin R, Durak I. Effects of Electromagnetic Radiation Use on Oxidant/Antioxidant Status and DNA Turn-over Enzyme Activities in Erythrocytes and Heart, Kidney, Liver, and Ovary Tissues From Rats: Possible Protective Role of Vitamin C. Toxicology mechanisms and methods. 2008;18(9):679-83.
  • 5. Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, et al. Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clinica chimica acta; international journal of clinical chemistry. 2004;340(1-2):153-62.
  • 6. Ozguner F, Oktem F, Armagan A, Yilmaz R, Koyu A, Demirel R, et al. Comparative analysis of the protective effects of melatonin and caffeic acid phenethyl ester (CAPE) on mobile phone-induced renal impairment in rat. Molecular and cellular biochemistry. 2005;276(1-2):31-7.
  • 7. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free radical biology & medicine. 1996;20(5):707-27.
  • 8. Baker K, Marcus CB, Huffman K, Kruk H, Malfroy B, Doctrow SR. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. The Journal of pharmacology and experimental therapeutics. 1998;284(1):215-21.
  • 9. Chauhan P, Verma HN, Sisodia R, Kesari KK. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats. Electromagnetic biology and medicine. 2017;36(1):20-30.
  • 10. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition. 2003;22(1):18-35.
  • 11. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. The American journal of clinical nutrition. 1999;69(6):1086-107.
  • 12. Harapanhalli RS, Yaghmai V, Giuliani D, Howell RW, Rao DV. Antioxidant effects of vitamin C in mice following X-irradiation. Research communications in molecular pathology and pharmacology. 1996;94(3):271-87.
  • 13. Saygin M, Caliskan S, Karahan N, Koyu A, Gumral N, Uguz A. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicology and industrial health. 2011;27(5):455-63.
  • 14. Faraone A, Luengas W, Chebrolu S, Ballen M, Bit-Babik G, Gessner AV, et al. Radiofrequency dosimetry for the Ferris-wheel mouse exposure system. Radiation research. 2006;165(1):105-12.
  • 15. YALÇIN A, SAYGIN M. ELEKTROMANYETİK ALANLARIN ÜREME SİSTEMİ ÜZERİNE ETKİLERİ. Mühendislik Bilimleri ve Tasarım Dergisi. 2016;4(2):105-24.
  • 16. Gokcek-Sarac C, Er H, Kencebay Manas C, Kantar Gok D, Ozen S, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. International journal of radiation biology. 2017;93(9):980-9.
  • 17. Bahreyni Toossi MH, Sadeghnia HR, Mohammad Mahdizadeh Feyzabadi M, Hosseini M, Hedayati M, Mosallanejad R, et al. Exposure to mobile phone (900-1800 MHz) during pregnancy: tissue oxidative stress after childbirth. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2017:1-6.
  • 18. Romanenko S, Begley R, Harvey AR, Hool L, Wallace VP. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. Journal of the Royal Society, Interface. 2017;14(137).
  • 19. Koca O, Gokce AM, Ozturk MI, Ercan F, Yurdakul N, Karaman MI. Effects of intensive cell phone (Philips Genic 900) use on the rat kidney tissue. Urology journal. 2013;10(2):886-91.
  • 20. Hopewell J, Calvo W, Jaenke R, Reinhold H, Robbins M, Whitehouse E. Microvasculature and radiation damage. Acute and Long-Term Side-Effects of Radiotherapy: Springer; 1993. p. 1-16.
  • 21. Stoyanovsky DA, Goldman R, Darrow RM, Organisciak DT, Kagan VE. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Current eye research. 1995;14(3):181-9.
  • 22. Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicology and industrial health. 2007;23(7):411-20.
  • 23. Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2008;62(2):104-9.
  • 24. Yakymenko I, Sidorik E. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices. Experimental oncology. 2010;32(2):54-60.
  • 25. Al-Damegh MA. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics (Sao Paulo, Brazil). 2012;67(7):785-92.

Histopathological Effects of 2.45 Gigahertz Electromagnetic Radiation on the Kidney, and Protective Effects of Vitamin C

Yıl 2018, Cilt: 9 Sayı: 4, 1 - 5, 25.12.2018
https://doi.org/10.22312/sdusbed.479744

Öz

Objectives: To investigate the effects of electromagnetic
radiation (EMR) on the kidneys based on histopathological changes of renal
damage, and to investigate the ameliorating effects of vitamin C (ascorbic
acid) against EMR-induced renal damage in rats.

Materials
and Methods
: Eighteen female Sprague-Dawley rats were divided into
three groups of six rats each. Group 1 was the sham group; these rats were kept
in their cages without stress or electromagnetic radiation exposure. Group 2
was exposed to 2.45 gigahertz electromagnetic radiation for 30 days. Group 3
was also exposed to 2.45 gigahertz electromagnetic radiation for 30 days (1
h/day) but received vitamin C 24 hours prior to the first exposure and daily
throughout the experiment. All rats underwent nephrectomy with
histopathological examination.

Results: There were no pathological findings in the sham
group. Significant pathological changes were observed in group 2, including
tubular and glomerular damage (P<0.05). Interstitial and vascular damage was
not significantly different between groups 2 and 3 (P>0.05). Tubular and glomerular damage was less severe in group
3 than in group 2 (P<0.05). There was no
significant difference between the sham group and group 3 in terms of tubular,
glomerular, interstitial, or vascular damage (P>0.05).







Conclusion: Electromagnetic radiation-induced tubular and
glomerular damage in the kidney was almost completely reversed with the administration
of vitamin C before electromagnetic radiation exposure.

Kaynakça

  • 1. Kheifets L, Afifi AA, Shimkhada R. Public health impact of extremely low-frequency electromagnetic fields. Environmental health perspectives. 2006;114(10):1532-7.
  • 2. Li M, Wang Y, Zhang Y, Zhou Z, Yu Z. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. Journal of radiation research. 2008;49(2):163-70.
  • 3. Almasiova V, Holovska K, Cigankova V, Racekova E, Fabianova K, Martoncikova M. Structural and ultrastructural study of rat testes influenced by electromagnetic radiation. Journal of toxicology and environmental health Part A. 2014;77(13):747-50.
  • 4. Devrim E, Erguder IB, Kilicoglu B, Yaykasli E, Cetin R, Durak I. Effects of Electromagnetic Radiation Use on Oxidant/Antioxidant Status and DNA Turn-over Enzyme Activities in Erythrocytes and Heart, Kidney, Liver, and Ovary Tissues From Rats: Possible Protective Role of Vitamin C. Toxicology mechanisms and methods. 2008;18(9):679-83.
  • 5. Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, et al. Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clinica chimica acta; international journal of clinical chemistry. 2004;340(1-2):153-62.
  • 6. Ozguner F, Oktem F, Armagan A, Yilmaz R, Koyu A, Demirel R, et al. Comparative analysis of the protective effects of melatonin and caffeic acid phenethyl ester (CAPE) on mobile phone-induced renal impairment in rat. Molecular and cellular biochemistry. 2005;276(1-2):31-7.
  • 7. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free radical biology & medicine. 1996;20(5):707-27.
  • 8. Baker K, Marcus CB, Huffman K, Kruk H, Malfroy B, Doctrow SR. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. The Journal of pharmacology and experimental therapeutics. 1998;284(1):215-21.
  • 9. Chauhan P, Verma HN, Sisodia R, Kesari KK. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats. Electromagnetic biology and medicine. 2017;36(1):20-30.
  • 10. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition. 2003;22(1):18-35.
  • 11. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. The American journal of clinical nutrition. 1999;69(6):1086-107.
  • 12. Harapanhalli RS, Yaghmai V, Giuliani D, Howell RW, Rao DV. Antioxidant effects of vitamin C in mice following X-irradiation. Research communications in molecular pathology and pharmacology. 1996;94(3):271-87.
  • 13. Saygin M, Caliskan S, Karahan N, Koyu A, Gumral N, Uguz A. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicology and industrial health. 2011;27(5):455-63.
  • 14. Faraone A, Luengas W, Chebrolu S, Ballen M, Bit-Babik G, Gessner AV, et al. Radiofrequency dosimetry for the Ferris-wheel mouse exposure system. Radiation research. 2006;165(1):105-12.
  • 15. YALÇIN A, SAYGIN M. ELEKTROMANYETİK ALANLARIN ÜREME SİSTEMİ ÜZERİNE ETKİLERİ. Mühendislik Bilimleri ve Tasarım Dergisi. 2016;4(2):105-24.
  • 16. Gokcek-Sarac C, Er H, Kencebay Manas C, Kantar Gok D, Ozen S, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. International journal of radiation biology. 2017;93(9):980-9.
  • 17. Bahreyni Toossi MH, Sadeghnia HR, Mohammad Mahdizadeh Feyzabadi M, Hosseini M, Hedayati M, Mosallanejad R, et al. Exposure to mobile phone (900-1800 MHz) during pregnancy: tissue oxidative stress after childbirth. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2017:1-6.
  • 18. Romanenko S, Begley R, Harvey AR, Hool L, Wallace VP. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. Journal of the Royal Society, Interface. 2017;14(137).
  • 19. Koca O, Gokce AM, Ozturk MI, Ercan F, Yurdakul N, Karaman MI. Effects of intensive cell phone (Philips Genic 900) use on the rat kidney tissue. Urology journal. 2013;10(2):886-91.
  • 20. Hopewell J, Calvo W, Jaenke R, Reinhold H, Robbins M, Whitehouse E. Microvasculature and radiation damage. Acute and Long-Term Side-Effects of Radiotherapy: Springer; 1993. p. 1-16.
  • 21. Stoyanovsky DA, Goldman R, Darrow RM, Organisciak DT, Kagan VE. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Current eye research. 1995;14(3):181-9.
  • 22. Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicology and industrial health. 2007;23(7):411-20.
  • 23. Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2008;62(2):104-9.
  • 24. Yakymenko I, Sidorik E. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices. Experimental oncology. 2010;32(2):54-60.
  • 25. Al-Damegh MA. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics (Sao Paulo, Brazil). 2012;67(7):785-92.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Ercan Baş 0000-0002-0731-880X

Murat Uçar 0000-0002-8690-0485

Funda Yıldırım Baş 0000-0001-6852-3180

Şükriye Yeşilot

İlkay Armağan

Arzu Yalçın 0000-0002-7738-5477

Yayımlanma Tarihi 25 Aralık 2018
Gönderilme Tarihi 7 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 9 Sayı: 4

Kaynak Göster

Vancouver Baş E, Uçar M, Yıldırım Baş F, Yeşilot Ş, Armağan İ, Yalçın A. Histopathological Effects of 2.45 Gigahertz Electromagnetic Radiation on the Kidney, and Protective Effects of Vitamin C. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2018;9(4):1-5.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.