Research Article
BibTex RIS Cite

Nanocellulose Containing Polymethyl Methacrylate Bone Cements: Effect of Production Process and Silanization on Mechanical Characteristics

Year 2019, Volume: 10 Issue: 4, 436 - 443, 13.12.2019

Abstract

Bone cement is one of the essential orthopedic materials in clinical
applications for fixing hip implants. However, the use of bone cement is
subject to some limitations like mechanical mismatch with the implantation
site. Despite the use of some fillers and bone cement formulations to tackle
these limitations, there is still a need for better solutions. It is possible
for nanocellulose (NC) to yield successful results in creating a formulation
with bone cements thanks to its natural, crystal and strong structure. In this
study, the mechanical performance of bone cements containing NC that is
produced with varying methods, and varying ratios in bone cement was examined.
Moreover, a comparative study by the silanization method; which is used for
enhancing the inter-phase compatibility in composite technology; and employing
the same ratios in NC formulations with silanized and non-silanized particles
was conducted. The results revealed that the silanization of NC does not create
a difference in mechanical strength compared to the non-silanized formulation,
however, a significant difference was detected with NC produced by different
drying methods.  

Supporting Institution

Süleyman Demirel Üniversitesi BAP

Project Number

TSG-2018-6749 Project

Thanks

The author gratefully acknowledges the financial support for this work provided by the Suleyman Demirel University BAP (TSG-2018-6749 Project). The author also thanks to Zeynep Kocer and Isa Sahin for their help to synthesis of nanocellulose.

References

  • 1. Markets and Markets Reports. Global Orthopedics Devices Market (2011 – 2016), published in 2011.
  • 2. Lee IJ, Choi AL, Yie MY, Yoon JY, Jeon EY, Koh SH, Yoon DY, Lim KJ, Im HJ. CT evaluation of local leakage of bone cement after percutaneous kyphoplasty and vertebroplasty Acta radiol. 2010, 51, 649-654.
  • 3. Masala S, Nano G, Marcia S, Muto M, Fucci FP, Simonetti G. Osteoporotic vertebral compression fractures augmentation by injectable partly resorbable ceramic bone substitute (CeramentTM|SPINE SUPPORT): a prospective nonrandomized study. Neuroradiology 2012, 54, 589-596.
  • 4. Boger A, Wheeler K, Montali A, Gruskin EJ. NMP-Modified PMMA Bone Cement with Adapted Mechanical and Hardening Properties for the Use in Cancellous Bone Augmentation. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 90, 760-766.
  • 5. Hu X, Zhai X, Hirt T. A New Concept for More Biocompliant Bone Cement for Vertebroplasty and Kyphoplasty. Macromol. Biosci. 2009, 9, 195-202.
  • 6. Wolff KD, Swaid S, Nolte D, Böckmann RA, Hölzle F, Müller-Mai CJ. Degradable injectable bone cement in maxillofacial surgery: Indications and clinical experience in 27 patients. Cranio-Maxillofacial Surg. 2004, 32, 71-79.
  • 7. O’Brien S, Bennett D, Blair PH, Beverland DE. Femoral nerve compression after migration of bone cement to the groin after hip arthroplasty. J. Arthroplasty 2011, 26, 11-13.
  • 8. Husby OS, Haugan K, Benum P Foss, OA. A prospective randomised radiostereometric analysis trial of SmartSet HV and Palacos R bone cements in primary total hip arthroplasty. J. Orthop. Traumatol. 2010, 11, 29-35.
  • 9. Randelli P, Evola FR, Cabitza P, Polli L, Denti M, Vaienti L. Prophylactic use of antibiotic-loaded bone cement in primary total knee replacement. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 181-186.
  • 10. Atkinson HD, Ranawat VS, Oakeshott RDJ. Granuloma debridement and the use of an injectable calcium phosphate bone cement in the treatment of osteolysis in an uncemented total knee replacement. Orthop. Surg. Res. 2010, 5, 1-6.
  • 11. Deb S, Vazquez B. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers. Biomaterials 2001, 22, 2177-2181.
  • 12. May-Pat A, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Flores-Gallardo SGJ. Comparative study on the mechanical and fracture properties of acrylic bone cements prepared with monomers containing amine groups. Mech. Behav. Biomed. Mater. 2012, 6, 95-105.
  • 13. Cervantes-Uc JM, Vázquez-Torres H, Cauich-Rodríguez JV, Vázquez-Lasa B, San Román del Barrio J. Comparative study on the properties of acrylic bone cements prepared with either aliphatic or aromatic functionalized methacrylates. Biomaterials 2005, 26, 4063-4072.
  • 14. Nien YH, Chen J. Studies of the mechanical and thermal properties of cross-linked poly(methylmethacrylate-acrylic acid-allylmethacrylate)-modified bone cement. J. Appl. Polym. Sci. 2006, 100, 3727-3732.
  • 15. Perek J, Pilliar RM. Fracture Thoughness of Composite Acrylic Bone Cement. J. Mater. Sci. Mater. Med. 1992, 3, 333-344.
  • 16. Vallo CI, Montemartini PE, Fanovich López JMP, Cuadrado TR. Poly(methyl methacrylate)-based Bone Cement Modified with Hydroxyapatite. J. Biomed. Mater. Res. 1999, 48, 150-158.
  • 17. Sogal A, Hulbert SF. Mechanical properties of a composite bone cement: polymethylmethacrylate and hydroxyapatite. Bioceramics 1992, 5, 213-224.
  • 18. Harper EJ, Braden M, Bonfield W. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: Influence of a silane coupling agent. J. Mater. Sci. Mater. Med. 2000, 11, 491-497.
  • 19. Vázquez B, Ginebra MP, Gil X, Planell JA, San Román J. Acrylic bone cements modified with β-TCP particles encapsulated with poly(ethylene glycol). Biomaterials 2005, 26, 4309-4316.
  • 20. Ávila-Ortega A, Escamilla-Coral MI, Cervantes-Uc JM. Optimization of Methyl Methacrylate Inductively Coupled Plasma Surface Modification of ZrO2 Particles used in Acrylic Bone Cement Formulations. Polym – Plast. Technol. Eng. 2017, 56, 777-787.
  • 21. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302-325.
  • 22. Wang S, Feng Q, Sun J, Gao F, Fan W, Zhang Z, Li X, Jiang X. Nanocrystalline Cellulose Improves the Biocompatibility and Reduces the Wear Debris of Ultrahigh Molecular Weight Polyethylene via Weak Binding. ACS Nano 2016, 10, 298-306.
  • 23. Dong H, Sliozberg YR, Snyder JF, Steele J, Chantawansri TL, Orlicki JA, Walck SD, Reiner RS, Rudie AW. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. ACS Appl. Mater. Interfaces 2015, 7, 25464-25472.
  • 24. Yin Y, Tian X, Jiang X, Wang H, Gao W. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate Carbohydr. Polym. 2016, 142, 206-212.
  • 25. Raquez J-M, Murena Y, Goffin A-L, Habibi Y, Ruelle B, DeBuyl F, Dubois P. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Compos. Sci. Technol. 2012, 72, 544-549.
  • 26. Tanir TE, Hasirci V, Hasirci N. Electrospinning of chitosan/poly(lactic acid-co-glycolic acid)/hydroxyapatite composite nanofibrous mats for tissue engineering applications. Polym. Bull. 2014, 71, 2999-3016.
  • 27. Beck S, Bouchard J, Berry R. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 2012, 13, 1486-1494.
  • 28. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781-1788.
  • 29. Haafiz MKM, Eichhorn SJ, Hassan A, Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 2013, 93, 628-634.
  • 30. Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 2008, 49, 1285-1296.
  • 31. Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH. in Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas OJ, Eds.; Springer: London, 2016 pp. 122.
  • 32. Liu H, Liu H, Yao F, Wu Q. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technol. 2010, 101, 5685-5692.
  • 33. Littunen K, Hippi U, Saarinen T, Seppälä J. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites Carbohydr. Polym. 2013, 91, 1, 183-190.
  • 34. Aydemir Sezer U, Aksoy EA, Hasirci V, Hasirci N. Poly(ɛ-caprolactone) Composites Containing Gentamicin-Loaded β-Tricalcium Phosphate/Gelatin Microspheres as Bone Tissue Supports. J. Appl. Polym. Sci. 2013, 127, 2132-2139.
  • 35. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1-33.
  • 36. Andresen M, Stenius P. Water-in-oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose. J. Dispers. Sci. Technol. 2007, 28, 837-844.
  • 37. Kenny SM, Buggy M. Bone cements and fillers: A review. J. Mater. Sci. Mater. Med. 2003, 14, 923-938.
  • 38. Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.
  • 39. Kim J, Shim BS, Kim HS, Lee Y-J, Min S-K, Jang D, Abas Z, Kim J. Review of Nanocellulose for Sustainable Future Materials. Int. J. Precis. Eng. Manuf. Tech. 2015, 2, 197-213.
  • 40. Ioelovich M. Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanosci. Nanotecnol. 2012, 2, 9-13.

Nanocellulose Containing Polymethyl Methacrylate Bone Cements: Effect of Production Process and Silanization on Mechanical Characteristics

Year 2019, Volume: 10 Issue: 4, 436 - 443, 13.12.2019

Abstract

Kemik
çimentosu, kalça implantlarını sabitlemek için klinik uygulamalarda gerekli
ortopedik malzemelerden biridir. Bununla birlikte, kemik çimentosu kullanımı,
implantasyon bölgesi ile mekanik uyumsuzluk gibi bazı sınırlamalara tabidir. Bu
sınırlamaların üstesinden gelmek için bazı dolgu maddelerinin ve kemik
çimentosu formülasyonlarının kullanılmasına rağmen, daha iyi çözümlere hala
ihtiyaç vardır. Nanoselülozun (NC), doğal, kristal ve güçlü yapısı sayesinde
kemik çimentoları ile formülasyon oluşturmada başarılı sonuçlar vermesi
mümkündür. Bu çalışmada, değişik yöntemlerle üretilen NC içeren kemik
çimentolarının mekanik performansını ve kemik çimentosundaki değişken
oranlarını incelenmiştir. Ayrıca, silanizasyon yöntemiyle karşılaştırmalı bir
çalışma ile kompozit teknolojide fazlar arası uyumluluğun arttırılması için kullanılan
ve aynı oranların silanize edilmiş ve silanize edilmemiş parçacıklarla NC
formülasyonlarında kullanılması araştırılmıştır. Sonuçlar, NC silanizasyonunun,
silanize edilmemiş formülasyona kıyasla mekanik mukavemette bir fark
yaratmadığını ortaya koymuş, ancak farklı kurutma yöntemleri ile üretilen NC
ile önemli fark tespit edilmiştir.

Project Number

TSG-2018-6749 Project

References

  • 1. Markets and Markets Reports. Global Orthopedics Devices Market (2011 – 2016), published in 2011.
  • 2. Lee IJ, Choi AL, Yie MY, Yoon JY, Jeon EY, Koh SH, Yoon DY, Lim KJ, Im HJ. CT evaluation of local leakage of bone cement after percutaneous kyphoplasty and vertebroplasty Acta radiol. 2010, 51, 649-654.
  • 3. Masala S, Nano G, Marcia S, Muto M, Fucci FP, Simonetti G. Osteoporotic vertebral compression fractures augmentation by injectable partly resorbable ceramic bone substitute (CeramentTM|SPINE SUPPORT): a prospective nonrandomized study. Neuroradiology 2012, 54, 589-596.
  • 4. Boger A, Wheeler K, Montali A, Gruskin EJ. NMP-Modified PMMA Bone Cement with Adapted Mechanical and Hardening Properties for the Use in Cancellous Bone Augmentation. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 90, 760-766.
  • 5. Hu X, Zhai X, Hirt T. A New Concept for More Biocompliant Bone Cement for Vertebroplasty and Kyphoplasty. Macromol. Biosci. 2009, 9, 195-202.
  • 6. Wolff KD, Swaid S, Nolte D, Böckmann RA, Hölzle F, Müller-Mai CJ. Degradable injectable bone cement in maxillofacial surgery: Indications and clinical experience in 27 patients. Cranio-Maxillofacial Surg. 2004, 32, 71-79.
  • 7. O’Brien S, Bennett D, Blair PH, Beverland DE. Femoral nerve compression after migration of bone cement to the groin after hip arthroplasty. J. Arthroplasty 2011, 26, 11-13.
  • 8. Husby OS, Haugan K, Benum P Foss, OA. A prospective randomised radiostereometric analysis trial of SmartSet HV and Palacos R bone cements in primary total hip arthroplasty. J. Orthop. Traumatol. 2010, 11, 29-35.
  • 9. Randelli P, Evola FR, Cabitza P, Polli L, Denti M, Vaienti L. Prophylactic use of antibiotic-loaded bone cement in primary total knee replacement. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 181-186.
  • 10. Atkinson HD, Ranawat VS, Oakeshott RDJ. Granuloma debridement and the use of an injectable calcium phosphate bone cement in the treatment of osteolysis in an uncemented total knee replacement. Orthop. Surg. Res. 2010, 5, 1-6.
  • 11. Deb S, Vazquez B. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers. Biomaterials 2001, 22, 2177-2181.
  • 12. May-Pat A, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Flores-Gallardo SGJ. Comparative study on the mechanical and fracture properties of acrylic bone cements prepared with monomers containing amine groups. Mech. Behav. Biomed. Mater. 2012, 6, 95-105.
  • 13. Cervantes-Uc JM, Vázquez-Torres H, Cauich-Rodríguez JV, Vázquez-Lasa B, San Román del Barrio J. Comparative study on the properties of acrylic bone cements prepared with either aliphatic or aromatic functionalized methacrylates. Biomaterials 2005, 26, 4063-4072.
  • 14. Nien YH, Chen J. Studies of the mechanical and thermal properties of cross-linked poly(methylmethacrylate-acrylic acid-allylmethacrylate)-modified bone cement. J. Appl. Polym. Sci. 2006, 100, 3727-3732.
  • 15. Perek J, Pilliar RM. Fracture Thoughness of Composite Acrylic Bone Cement. J. Mater. Sci. Mater. Med. 1992, 3, 333-344.
  • 16. Vallo CI, Montemartini PE, Fanovich López JMP, Cuadrado TR. Poly(methyl methacrylate)-based Bone Cement Modified with Hydroxyapatite. J. Biomed. Mater. Res. 1999, 48, 150-158.
  • 17. Sogal A, Hulbert SF. Mechanical properties of a composite bone cement: polymethylmethacrylate and hydroxyapatite. Bioceramics 1992, 5, 213-224.
  • 18. Harper EJ, Braden M, Bonfield W. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: Influence of a silane coupling agent. J. Mater. Sci. Mater. Med. 2000, 11, 491-497.
  • 19. Vázquez B, Ginebra MP, Gil X, Planell JA, San Román J. Acrylic bone cements modified with β-TCP particles encapsulated with poly(ethylene glycol). Biomaterials 2005, 26, 4309-4316.
  • 20. Ávila-Ortega A, Escamilla-Coral MI, Cervantes-Uc JM. Optimization of Methyl Methacrylate Inductively Coupled Plasma Surface Modification of ZrO2 Particles used in Acrylic Bone Cement Formulations. Polym – Plast. Technol. Eng. 2017, 56, 777-787.
  • 21. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302-325.
  • 22. Wang S, Feng Q, Sun J, Gao F, Fan W, Zhang Z, Li X, Jiang X. Nanocrystalline Cellulose Improves the Biocompatibility and Reduces the Wear Debris of Ultrahigh Molecular Weight Polyethylene via Weak Binding. ACS Nano 2016, 10, 298-306.
  • 23. Dong H, Sliozberg YR, Snyder JF, Steele J, Chantawansri TL, Orlicki JA, Walck SD, Reiner RS, Rudie AW. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. ACS Appl. Mater. Interfaces 2015, 7, 25464-25472.
  • 24. Yin Y, Tian X, Jiang X, Wang H, Gao W. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate Carbohydr. Polym. 2016, 142, 206-212.
  • 25. Raquez J-M, Murena Y, Goffin A-L, Habibi Y, Ruelle B, DeBuyl F, Dubois P. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Compos. Sci. Technol. 2012, 72, 544-549.
  • 26. Tanir TE, Hasirci V, Hasirci N. Electrospinning of chitosan/poly(lactic acid-co-glycolic acid)/hydroxyapatite composite nanofibrous mats for tissue engineering applications. Polym. Bull. 2014, 71, 2999-3016.
  • 27. Beck S, Bouchard J, Berry R. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 2012, 13, 1486-1494.
  • 28. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781-1788.
  • 29. Haafiz MKM, Eichhorn SJ, Hassan A, Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 2013, 93, 628-634.
  • 30. Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 2008, 49, 1285-1296.
  • 31. Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH. in Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas OJ, Eds.; Springer: London, 2016 pp. 122.
  • 32. Liu H, Liu H, Yao F, Wu Q. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technol. 2010, 101, 5685-5692.
  • 33. Littunen K, Hippi U, Saarinen T, Seppälä J. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites Carbohydr. Polym. 2013, 91, 1, 183-190.
  • 34. Aydemir Sezer U, Aksoy EA, Hasirci V, Hasirci N. Poly(ɛ-caprolactone) Composites Containing Gentamicin-Loaded β-Tricalcium Phosphate/Gelatin Microspheres as Bone Tissue Supports. J. Appl. Polym. Sci. 2013, 127, 2132-2139.
  • 35. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1-33.
  • 36. Andresen M, Stenius P. Water-in-oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose. J. Dispers. Sci. Technol. 2007, 28, 837-844.
  • 37. Kenny SM, Buggy M. Bone cements and fillers: A review. J. Mater. Sci. Mater. Med. 2003, 14, 923-938.
  • 38. Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.
  • 39. Kim J, Shim BS, Kim HS, Lee Y-J, Min S-K, Jang D, Abas Z, Kim J. Review of Nanocellulose for Sustainable Future Materials. Int. J. Precis. Eng. Manuf. Tech. 2015, 2, 197-213.
  • 40. Ioelovich M. Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanosci. Nanotecnol. 2012, 2, 9-13.
There are 40 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Article
Authors

Ümran Sezer 0000-0003-0864-0742

Project Number TSG-2018-6749 Project
Publication Date December 13, 2019
Submission Date September 12, 2019
Published in Issue Year 2019 Volume: 10 Issue: 4

Cite

Vancouver Sezer Ü. Nanocellulose Containing Polymethyl Methacrylate Bone Cements: Effect of Production Process and Silanization on Mechanical Characteristics. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2019;10(4):436-43.

SDÜ Sağlık Bilimleri Dergisi, makalenin gönderilmesi ve yayınlanması dahil olmak üzere hiçbir aşamada herhangi bir ücret talep etmemektedir. Dergimiz, bilimsel araştırmaları okuyucuya ücretsiz sunmanın bilginin küresel paylaşımını artıracağı ilkesini benimseyerek, içeriğine anında açık erişim sağlamaktadır.