Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Piecewise Regression and Polynomial Regression Analyses in Health and Simulation Data Sets

Yıl 2020, Cilt: 11 Sayı: 2, 144 - 151, 15.06.2020

Öz

Objective: Piecewise
regression, which one or more pieces are combined in breakpoints, is widely
used as a statistical technique. It was aimed to compare piecewise regression
analyses and polynomial regression analysis using both simulated data and real
data sets.

Material-Method: In
the application step of the study, algorithms were created by using R software
for simulation practice. Polynomial and piecewise regression analysis methods
were compared using data sets with n=100 units and 1000 times running
simulation. In addition, estimation performances of piecewise and polynomial
regression built by using the data sets which contained in the number of
tuberculosis cases according to age in 2010 year and the number of measles
cases from 1993 to 2015 years in Turkey were compared.

Results: It
was found that there was a significant difference between all of the polynomial
and piecewise regression models (p<0.001). The
 values of piecewise regression models were higher than
polynomial regression models; MSE, AIC and BIC values were observed to be
lower. According to the result of both simulation and real data set
applications, piecewise regression models which were generated according to
optimal knots were found to have better estimation performance than polynomial
regression models according to
, MSE, AIC
and BIC criteria.







Conclusions: This
study revealed that data analysis with piecewise regressions having optimal
knots provided statistically superiority, although polynomial regression
methods are preferred in the field of health studies mostly.

Kaynakça

  • Freedman DA. Statistical models: theory and practice: cambridge university press; 2009.
  • Freund RJ, Wilson WJ, Sa P. Regression analysis: Academic Press; 2006.
  • Hartley HO, Booker A. Nonlinear least squares estimation. The Annals of mathematical statistics. 1965;36(2):638-50.
  • Seber G, Wild C. Nonlinear regression. 2003. Hoboken: John Wiley & Sons Google Scholar. 2003.
  • Park SH. Experimental designs for fitting segmented polynomial regression models. Technometrics. 1978;20(2):151-4.
  • Wainer H. Piecewise regression: A simplified procedure. British Journal of Mathematical and Statistical Psychology. 1971;24(1):83-92.
  • Eubank R. Approximate regression models and splines. Communications in Statistics-Theory and Methods. 1984;13(4):433-84.
  • Gallant AR, Fuller WA. Fitting segmented polynomial regression models whose join points have to be estimated. Journal of the American Statistical Association. 1973;68(341):144-7.
  • Berberoglu B, Berberoglu CN. Modeling the Structural Shifts in Real Exchange Rate with Cubic Spline Regression (CSR). Turkey 1987-2008. International Journal of Business and Social Science. 2011;2(17).
  • De Boor C, Rice JR. Least squares cubic spline approximation, II-variable knots. 1968.
  • Poirier DJ. Piecewise regression using cubic splines. Journal of the American Statistical Association. 1973;68(343):515-24.
  • Porth RW. Application of least square cubic splines to the analysis of edges. 1984.
  • Schwetlick H, Schütze T. Least squares approximation by splines with free knots. BIT Numerical mathematics. 1995;35(3):361-84.
  • Draper NR, Smith H. Applied regression analysis: John Wiley & Sons; 2014.
  • Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Statistics in medicine. 1984;3(2):143-52.
  • Chan S-h. Polynomial spline regression with unknown knots and AR (1) errors: The Ohio State University; 1989.
  • De Boor C, Rice JR. Least squares cubic spline approximation I-Fixed knots. 1968.
  • Eubank RL. Nonparametric regression and spline smoothing: CRC press; 1999.
  • Wold S. Spline functions in data analysis. Technometrics. 1974;16(1):1-11.
  • Hawkins DM. On the choice of segments in piecewise approximation. IMA Journal of Applied Mathematics. 1972;9(2):250-6.
  • Ruppert D. Selecting the number of knots for penalized splines. Journal of computational and graphical statistics. 2002;11(4):735-57.
  • Agarwal GG, Studden W. An algorithm for selection of design and knots in the response curve estimation by spline functions: Purdue University. Department of Statistics; 1978.
  • Marsh LC, Cormier DR. Spline regression models: Sage; 2001.
  • Powell M. The local dependence of least squares cubic splines. SIAM Journal on Numerical Analysis. 1969;6(3):398-413.
  • Smith PL. Splines as a useful and convenient statistical tool. The American Statistician. 1979;33(2):57-62.
  • Wegman EJ, Wright IW. Splines in statistics. Journal of the American Statistical Association. 1983;78(382):351-65.
  • Genç A, Oktay E, Alkan Ö. İhracatın İthalatı Karşılama Oranlarının Parçalı Regresyonlarla Modellenmesi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. 2012;16(1).
  • Markov D. Information content in stock market technical patterns: A spline regression approach. 2003.
  • Marsh LC. Estimating the number and location of knots in spline regressions. Journal of Applied Business Research. 1986;3:60-70.
  • Studden WJ, VanArman D. Admissible designs for polynomial spline regression. The Annals of Mathematical Statistics. 1969;40(5):1557-69.
  • Hurley D, Hussey J, McKeown R, Addy C, editors. An evaluation of splines in linear regression. The 132nd Annual Meeting; 2004.
  • Mulla Z. Spline regression in clinical research. West indian medical journal. 2007;56(1):77-9.
  • Parkhurst A, Spiers D, Hahn G. Spline models for estimating heat stress thresholds in cattle. 2002.

Comparison of Piecewise Regression and Polynomial Regression Analyses in Health and Simulation Data Sets

Yıl 2020, Cilt: 11 Sayı: 2, 144 - 151, 15.06.2020

Öz

Amaç:
Bir
veya daha fazla parçanın kırılma noktalarında birleştirildiği parçalı
regresyon, istatistiksel bir teknik olarak yaygın bir şekilde kullanılmaktadır.
Bu çalışmada hem simülasyon verisi hem de gerçek veri setleri kullanılarak tek
değişkenli polinom regresyon analizi ile karesel ve kübik parçalı regresyon
analizlerinin karşılaştırılması hedeflendi.



Materyal-Metot: Çalışmanın uygulama basamağında R
yazılım programı kullanılarak simülasyon uygulaması için algoritmalar yazıldı.
Polinom ve sürekli parçalı regresyon analiz yöntemlerinin karşılaştırılması
n=100 birimlik veri setleri için 1000 tekrarlı simülasyon ile gerçekleştirildi.
Ayrıca Türkiye’de 2010 yılındaki tüberküloz vaka sayılarını içeren tüberküloz
veri seti ile Türkiye’deki 1973-2010 yılları arasındaki kızamık vaka sayılarını
içeren kızamık veri setleri kullanılarak oluşturulan polinom ve parçalı
regresyon modellerinin tahmin performansları;
, HKO, ABK ve BBK değerlerine göre
karşılaştırıldı.



Bulgular: Tüm polinom ve parçalı regresyon
modellerinin
,
HKO, ABK ve BBK değerleri bakımından performansları istatistiksel olarak
birbirinden farklı bulundu (p<0.001). Parçalı regresyon modellerinin
 değerlerinin polinom regresyon modellerine
göre daha yüksek; HKO, ABK ve BBK değerlerinin ise daha düşük olduğu
gözlendi. 
Gerçek veri setleri ile
yapılan uygulamalarda en uygun dönüm noktalarına göre oluşturulan tüm parçalı
regresyon modellerinin
 değerlerinin
polinom regresyonlardan daha yüksek; HKO, ABK ve BBK değerlerinin ise daha
düşük olduğu belirlendi
Oluşturulan parçalı regresyon modellerinin veri setlerini polinom
regresyonlara göre daha iyi tahmin ettiği belirlendi.



Sonuç: Sağlık alanında yapılan çalışmaların çoğunda
polinom regresyon yöntemlerinin tercih edilmesine rağmen bu çalışma ile en
uygun dönüm noktalı parçalı regresyonlarla veri analizinin istatistiksel açıdan
üstünlük sa
ğladığı
uygulamalarla ortaya konmuştur.

Kaynakça

  • Freedman DA. Statistical models: theory and practice: cambridge university press; 2009.
  • Freund RJ, Wilson WJ, Sa P. Regression analysis: Academic Press; 2006.
  • Hartley HO, Booker A. Nonlinear least squares estimation. The Annals of mathematical statistics. 1965;36(2):638-50.
  • Seber G, Wild C. Nonlinear regression. 2003. Hoboken: John Wiley & Sons Google Scholar. 2003.
  • Park SH. Experimental designs for fitting segmented polynomial regression models. Technometrics. 1978;20(2):151-4.
  • Wainer H. Piecewise regression: A simplified procedure. British Journal of Mathematical and Statistical Psychology. 1971;24(1):83-92.
  • Eubank R. Approximate regression models and splines. Communications in Statistics-Theory and Methods. 1984;13(4):433-84.
  • Gallant AR, Fuller WA. Fitting segmented polynomial regression models whose join points have to be estimated. Journal of the American Statistical Association. 1973;68(341):144-7.
  • Berberoglu B, Berberoglu CN. Modeling the Structural Shifts in Real Exchange Rate with Cubic Spline Regression (CSR). Turkey 1987-2008. International Journal of Business and Social Science. 2011;2(17).
  • De Boor C, Rice JR. Least squares cubic spline approximation, II-variable knots. 1968.
  • Poirier DJ. Piecewise regression using cubic splines. Journal of the American Statistical Association. 1973;68(343):515-24.
  • Porth RW. Application of least square cubic splines to the analysis of edges. 1984.
  • Schwetlick H, Schütze T. Least squares approximation by splines with free knots. BIT Numerical mathematics. 1995;35(3):361-84.
  • Draper NR, Smith H. Applied regression analysis: John Wiley & Sons; 2014.
  • Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Statistics in medicine. 1984;3(2):143-52.
  • Chan S-h. Polynomial spline regression with unknown knots and AR (1) errors: The Ohio State University; 1989.
  • De Boor C, Rice JR. Least squares cubic spline approximation I-Fixed knots. 1968.
  • Eubank RL. Nonparametric regression and spline smoothing: CRC press; 1999.
  • Wold S. Spline functions in data analysis. Technometrics. 1974;16(1):1-11.
  • Hawkins DM. On the choice of segments in piecewise approximation. IMA Journal of Applied Mathematics. 1972;9(2):250-6.
  • Ruppert D. Selecting the number of knots for penalized splines. Journal of computational and graphical statistics. 2002;11(4):735-57.
  • Agarwal GG, Studden W. An algorithm for selection of design and knots in the response curve estimation by spline functions: Purdue University. Department of Statistics; 1978.
  • Marsh LC, Cormier DR. Spline regression models: Sage; 2001.
  • Powell M. The local dependence of least squares cubic splines. SIAM Journal on Numerical Analysis. 1969;6(3):398-413.
  • Smith PL. Splines as a useful and convenient statistical tool. The American Statistician. 1979;33(2):57-62.
  • Wegman EJ, Wright IW. Splines in statistics. Journal of the American Statistical Association. 1983;78(382):351-65.
  • Genç A, Oktay E, Alkan Ö. İhracatın İthalatı Karşılama Oranlarının Parçalı Regresyonlarla Modellenmesi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. 2012;16(1).
  • Markov D. Information content in stock market technical patterns: A spline regression approach. 2003.
  • Marsh LC. Estimating the number and location of knots in spline regressions. Journal of Applied Business Research. 1986;3:60-70.
  • Studden WJ, VanArman D. Admissible designs for polynomial spline regression. The Annals of Mathematical Statistics. 1969;40(5):1557-69.
  • Hurley D, Hussey J, McKeown R, Addy C, editors. An evaluation of splines in linear regression. The 132nd Annual Meeting; 2004.
  • Mulla Z. Spline regression in clinical research. West indian medical journal. 2007;56(1):77-9.
  • Parkhurst A, Spiers D, Hahn G. Spline models for estimating heat stress thresholds in cattle. 2002.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Buğra Varol 0000-0001-8052-7782

İmran Kurt Omurlu 0000-0003-2887-6656

Mevlüt Türe Bu kişi benim 0000-0003-3187-2322

Yayımlanma Tarihi 15 Haziran 2020
Gönderilme Tarihi 22 Ekim 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 11 Sayı: 2

Kaynak Göster

Vancouver Varol B, Kurt Omurlu İ, Türe M. Comparison of Piecewise Regression and Polynomial Regression Analyses in Health and Simulation Data Sets. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020;11(2):144-51.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.