Araştırma Makalesi
BibTex RIS Kaynak Göster

P. Aeruginosa Bakterisinin Vitamin B Kompleksi ve Kırmızı Lazer Kullanılarak İnaktive Edilmesi

Yıl 2022, Cilt: 13 Sayı: 3, 353 - 363, 20.12.2022
https://doi.org/10.22312/sdusbed.1138073

Öz

Son yıllarda anti-bakteriyel direnç olgusu, bakterilerin neden olduğu hastalıklarla mücadelede daha fazla sorun haline gelmiştir. Biz bu çalışmayla, açık yara ve yanıkların fırsatçı patojeni olan Pseudomonas aeruginosayı daha etkili bir yöntemle inaktive etmeyi ve fotodinamik inaktivasyon(PDI) gelişimine katkıda bulunmayı hedefledik. Pseudomonas aeruginosa bakterisini, vitamin B kompleksi ve lazer ile inaktive olduğunu spektrofotometrik ölçümler ve antimikrobiyal madde etkinliği analiz yöntemleriyle gösterdik. Ayrıca PDI'nin bakteri üremesi üzerindeki etkisi hem kalitatif hem de kantitatif olarak değerlendirilmiştir. Escherichia coli ve Pseudomonas aeruginosa suşları karşılaştırılarak ölüm oranları belirlendi. Koloni oluşturma birimi oranlarında Escherichia coli bakteri suşlarının karanlık ve ışık deneyinde vitamin B kompleksinin 0,25 mg/mL ve 0,125 mg/mL konsantrasyonlarında % 20’lik bir ölüm oranı görülmüştür. Pseudomonas aeruginosa bakteri suşlarının karanlık deneyinde vitamin B kompleksinin 0,5 mg/mL ve 0,125 mg/mL konsantrasyonlarında çok az bir ölüm oranı görülürken lazer maruziyet sonrası ölüm oranları sırasıyla % 60 ve % 50 çıktığı görülmüştür. Bu ölüm oranlarını doğrulama amaçlı akış sitometresi canlılık deneyleri yapılmış ve çıkan sonuçlar birbiriyle paralellik göstermiştir. Bu çalışmadan elde edilen veriler ışığında; kırmızı lazer diyotun, vitamin B kompleksi ile birlikte Pseudomonas aeruginosa bakterisinin inaktivasyonu için uygun bir aday olduğunu öngörmekteyiz. Yaptığımız bu çalışma, bakteriyel enfeksiyonların tedavisi için hastane, tıp ve mikrobiyoloji alanlarında yapılacak alternatif tedavi yöntemlerine ışık tutacaktır.   

Kaynakça

  • [1] Ohta, K.1900. Chemıcal studıes of hematoporphyrın rabbıts. Munch Med Wochenschr, 47, 5.
  • [2] Kapuscinski, R. B., Mitchell, R. 1981. Solar radiation induces sublethal injury in Escherichia coli in seawater. Applied and Environmental Microbiology, 41(3):670-674
  • [3] Cooney, J. J., Krinsky, N. I. 1972. Photodynamic killing of Acholeplasma laidlawii. Photochemistry and Photobiology, Dec;16(6):523-6.
  • [4] Acher, A.J, Juven, B.J. 1977. Destruction of coliforms in water and sewage water by dye sensitized photooxidation. Applied and Environmental Microbiology, 33(5):1019-1022
  • [5] Chidinma, C.2016. Identifying misconnection hotspots using coliforms and biofilm communities. University of Hertfordshire Research Archive 2016.
  • [6] Hamblin, A. M. R, Jori, G. 2011. Photodynamic Inactivation of Microbial Pathogens Medical and Environmental Applications: Light Strikes Back Microorganisms in the New Millennium. Photochemistry and Photobiology, 87(6), 1479–1479.
  • [7] Oktavia, L, Mulyani, I, Suendo, V. 2021. Investigation of Chlorophyl-a Derived Compounds as Photosensitizer for Photodynamic Inactivation. Bulletin of Chemical Reaction Engineering & Catalysis,16 (1), 161-169.
  • [8] Amos-Tautua, B. M., Songca, S. P., Oluwafemi, O. S. 2019. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules, 24(13), 2456.
  • [9] Wise, R. The urgent need for new antibacterial agents. 2011. Journal of Antimicrobial Chemotherapy, 66(9), 1939–1940.
  • [10] Liu, Y., Qin, R., Zaat, S. A. J., Breukink, E., Heger, M. 2015. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections, JDR Clinical and Translational Research, 1( 3 ), 140 – 167.
  • [11] Yurttaş, G. A., Gökduman, K., Hekim, S. N. 2022. Liposomes Loaded with Activatable Disulfide Bridged Photosensitizer: Towards Targeted and Effective Photodynamic Therapy on Breast Cancer Cells. Biointerface Research in Applied Chemistry, Volume 12, Issue 1, 304 -325
  • [12] Tim, M. 2015. Biology Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. Journal of Photochemistry and Photobiology B: Biology, 150, 2–10.
  • [13] Maisch, T., Eichner, A., Späth, A., Gollmer, A., König, B., Regensburger, J., Bäumler, W. 2014. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives, PLoS ONE, 9(12), 1-8.
  • [14] Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., Bahador, A. 2018. Photosensitizers in antibacterial photodynamic therapy : an overview. Laser therapy, 27(4), 293–302,
  • [15] Nitzan, Y., Gutterman, M., Malik, Z., Ehrenberg, B. 1992. Inactivation of Gram‐Negative Bacteria By Photosensitized Porphyrins. Photochemistry and Photobiology, 55(1),89–96.
  • [16] Jones, M. E., Draghi, D. C., Thornsberry, C., Karlowsky, J. A., Sahm, D. F., Wenzel, R.P. 2004. Emerging resistance among bacterial pathogens in the intensive care unit-a European and North American Surveillance study (2000-2002). Annals of Clinical Microbiology and Antimicrobials, 3: 14.
  • [17] Ahmed, F. Y., Aly, U. F., El-Baky, R. M. A., Waly, N. G. F. M. 2020. Comparative Study of Antibacterial Effects of Titanium Dioxide Nanoparticles Alone and in Combination with Antibiotics on MDR Pseudomonas aeruginosa Strains, International Journal of Nanomedicine, 15 3393 – 3404
  • [18] Whooley, M. A., O'callaghan, J. A., Mcloughlın, A. C. 1983. Effect of Substrate on the Regulation of Exoprotease Production by Pseudomonas aeruginosa ATCC 10145. Journal Of General Microbiology, 129, 981-988.
  • [19] Peloi, L. S., Soares, R. R. S., Biondo, C. E. G. , Souza, V. R., Hioka, N., Kimura, E.2008. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue, Journal of Biosciences.,33(2), 231–237.
  • [20] Lu, C. L., Liu, C. Y., Huang, Y. T., Liao, C. H., Teng, L. J., Turnidge, J. D., Hsueh, P. R. 2011. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrobial Agents and Chemotherapy, 55(9):4295-301.
  • [21] Sana, F., Satti, L., Zaman, G., Ikram, A., Gardezi, A. H., Khadim, M. T. 2019. In Vitro Comparison of Disk Diffusion Method and Agar Dilution Method for Sensitivity of Polymyxin B against Multi Drug Resistant Acinetobacter Baumannii. Pakistan Armed Forces Medical Journal, 69(5), 998–1003.
  • [22] Robertson, J., Swift, S., McGoverin, C., Vanholsbeeck, F. 2019. Optimisation of the protocol for the liVE/DEAD®BacLightTM bacterial viability kit for rapid determination of bacterial load. Frontiers in Microbiology, 10(APR). doi:10.3389/fmicb.2019.00801
  • [23] Karaboz, İ., Kayar, E., Akar, S. 2008. Flow Sitometri ve Kullanım Alanları. Elektronik Mikrobiyoloji Dergisi TR, Cilt: 06 Sayı: 2 Sayfa: 01-18.
  • [24] Kanev, M. O., Muranlı, F. D. G.2022. Flow sitometri ve kullanım alanları. Sakarya University Journal of Science, 20(1):33-38. Accessed May 19.
  • [25] Westfall, D. A., Krishnamoorthy, G., Wolloscheck, D., Sarkar, R., Zgurskaya, H. I., Rybenkov, V. V. 2017. Bifurcation kinetics of drug uptake by Gram-negative bacteria. PLoS ONE, 12(9), 1–18.
  • [26] Önalan, Ş, Seçkin, H. 2021. Identification and phylogenetic differences of newly isolated Streptomyces sp. Türk Tarım ve Doğa Bilimleri Dergisi, 8(3), 680–685.
  • [27] Zeina, B., Greenman, J., Purcell, W. M., Das, B. 2001. Killing of cutaneous microbial species by photodynamic therapy, British Journal of Dermatology, 144 274–278
  • [28] Mengeloglu, F. Z., Koçoǧlu, A. E., Çiçek, O. B., Özgümüş, C., Sandalli, E. E. 2021. Carriage of Class 1 and 2 Integrons in Acinetobacter Baumannii and Pseudomonas Aeruginosa Isolated from Clinical Specimens and a Novel Gene Cassette Array: BlaOXA-11-CmlA7.” Mikrobiyoloji Bülteni, 48 (1): 48–58.
  • [29] Zarakolu, P., Hasçelik, G., Ünal, S. 2006. Hastane enfeksiyonu etkeni gram negatif bakterilerin çeşitli antimikrobiyal ajanlara karşi duyarlilik durumu: hacettepe üniversitesi erişkin hastanesi mystic çalişmasi verisi (2000-2004). Mikrobiyoloji Bülteni, 40: 147-154
  • [30] Gaynes, R., Edwards, J. R. 2005. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clinical Infectious Diseases, 41: 848-54.
  • [31] Cossu, M., Ledda, L., Cossu, A. 2021. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Research International (Ottawa, Ont.), 144, 110358.
  • [32] Usacheva, M. N., Teichert, M. C., Biel, M. A. 2003. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. Journal of Photochemistry and Photobiology B: Biology, 71 87–98
  • [33] Kesici, D., Yıldırım, M. 2009. Fotodinamik Tedavi. SDÜ Tıp Fakültesi Dergisi, 7(4)
  • [34] Boran, R., Pamuk, A. M., Ugur, A.2018. In Vıtro Evaluatıon Of The Effectıveness Of Dıfferent Bodıpy Dyes As Photosensıtızer In Methıcıllın-Resıstant Staphylococcus Aureus Treatment. Mugla Journal of Science and Technology. 4(2): 191-197.

Inactivation Of P. Aeruginosa Bacteria Using Vitamin B Complex and Red Laser

Yıl 2022, Cilt: 13 Sayı: 3, 353 - 363, 20.12.2022
https://doi.org/10.22312/sdusbed.1138073

Öz

In recent years, the phenomenon of anti-bacterial resistance has become more of a problem in combating diseases caused by bacteria. With this study, we aimed to inactivate Pseudomonas aeruginosa, an opportunistic pathogen of open wounds and burns, with a more effective method and to contribute to the development of photodynamic inactivation (PDI). We have shown that Pseudomonas aeruginosa bacteria are inactivated by vitamin B complex and laser with verifications of both spectrophotometric measurements and antimicrobial agent activity analysis. Moreover, the effect of PDI on bacterial growth was evaluated both qualitatively and quantitatively. Mortality rates were determined by comparing Escherichia coli and Pseudomonas aeruginosa strains. In the dark and light experiment of Escherichia coli bacterial strains at colony forming unit rates, a mortality rate of 20% was observed at 0.25 mg/mL and 0.125 mg/mL concentrations of vitamin B complex. In the dark experiment of Pseudomonas aeruginosa bacterial strains, a very low mortality rate was observed at 0.5 mg/mL and 0.125 mg/mL concentrations of vitamin B complex, while mortality rates after laser exposure were 60% and 50%, respectively. Flow cytometer viability experiments were performed to confirm these mortality rates and the results exhibited consistency with each other. In the light of this study; We predict that the red laser diode, together with the vitamin B complex, is a suitable candidate for the inactivation of Pseudomonas aeruginosa bacteria. This study will shed light on alternative treatment methods for the treatment of bacterial infections in the fields of hospital, medicine, and microbiology.

Kaynakça

  • [1] Ohta, K.1900. Chemıcal studıes of hematoporphyrın rabbıts. Munch Med Wochenschr, 47, 5.
  • [2] Kapuscinski, R. B., Mitchell, R. 1981. Solar radiation induces sublethal injury in Escherichia coli in seawater. Applied and Environmental Microbiology, 41(3):670-674
  • [3] Cooney, J. J., Krinsky, N. I. 1972. Photodynamic killing of Acholeplasma laidlawii. Photochemistry and Photobiology, Dec;16(6):523-6.
  • [4] Acher, A.J, Juven, B.J. 1977. Destruction of coliforms in water and sewage water by dye sensitized photooxidation. Applied and Environmental Microbiology, 33(5):1019-1022
  • [5] Chidinma, C.2016. Identifying misconnection hotspots using coliforms and biofilm communities. University of Hertfordshire Research Archive 2016.
  • [6] Hamblin, A. M. R, Jori, G. 2011. Photodynamic Inactivation of Microbial Pathogens Medical and Environmental Applications: Light Strikes Back Microorganisms in the New Millennium. Photochemistry and Photobiology, 87(6), 1479–1479.
  • [7] Oktavia, L, Mulyani, I, Suendo, V. 2021. Investigation of Chlorophyl-a Derived Compounds as Photosensitizer for Photodynamic Inactivation. Bulletin of Chemical Reaction Engineering & Catalysis,16 (1), 161-169.
  • [8] Amos-Tautua, B. M., Songca, S. P., Oluwafemi, O. S. 2019. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules, 24(13), 2456.
  • [9] Wise, R. The urgent need for new antibacterial agents. 2011. Journal of Antimicrobial Chemotherapy, 66(9), 1939–1940.
  • [10] Liu, Y., Qin, R., Zaat, S. A. J., Breukink, E., Heger, M. 2015. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections, JDR Clinical and Translational Research, 1( 3 ), 140 – 167.
  • [11] Yurttaş, G. A., Gökduman, K., Hekim, S. N. 2022. Liposomes Loaded with Activatable Disulfide Bridged Photosensitizer: Towards Targeted and Effective Photodynamic Therapy on Breast Cancer Cells. Biointerface Research in Applied Chemistry, Volume 12, Issue 1, 304 -325
  • [12] Tim, M. 2015. Biology Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. Journal of Photochemistry and Photobiology B: Biology, 150, 2–10.
  • [13] Maisch, T., Eichner, A., Späth, A., Gollmer, A., König, B., Regensburger, J., Bäumler, W. 2014. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives, PLoS ONE, 9(12), 1-8.
  • [14] Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., Bahador, A. 2018. Photosensitizers in antibacterial photodynamic therapy : an overview. Laser therapy, 27(4), 293–302,
  • [15] Nitzan, Y., Gutterman, M., Malik, Z., Ehrenberg, B. 1992. Inactivation of Gram‐Negative Bacteria By Photosensitized Porphyrins. Photochemistry and Photobiology, 55(1),89–96.
  • [16] Jones, M. E., Draghi, D. C., Thornsberry, C., Karlowsky, J. A., Sahm, D. F., Wenzel, R.P. 2004. Emerging resistance among bacterial pathogens in the intensive care unit-a European and North American Surveillance study (2000-2002). Annals of Clinical Microbiology and Antimicrobials, 3: 14.
  • [17] Ahmed, F. Y., Aly, U. F., El-Baky, R. M. A., Waly, N. G. F. M. 2020. Comparative Study of Antibacterial Effects of Titanium Dioxide Nanoparticles Alone and in Combination with Antibiotics on MDR Pseudomonas aeruginosa Strains, International Journal of Nanomedicine, 15 3393 – 3404
  • [18] Whooley, M. A., O'callaghan, J. A., Mcloughlın, A. C. 1983. Effect of Substrate on the Regulation of Exoprotease Production by Pseudomonas aeruginosa ATCC 10145. Journal Of General Microbiology, 129, 981-988.
  • [19] Peloi, L. S., Soares, R. R. S., Biondo, C. E. G. , Souza, V. R., Hioka, N., Kimura, E.2008. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue, Journal of Biosciences.,33(2), 231–237.
  • [20] Lu, C. L., Liu, C. Y., Huang, Y. T., Liao, C. H., Teng, L. J., Turnidge, J. D., Hsueh, P. R. 2011. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrobial Agents and Chemotherapy, 55(9):4295-301.
  • [21] Sana, F., Satti, L., Zaman, G., Ikram, A., Gardezi, A. H., Khadim, M. T. 2019. In Vitro Comparison of Disk Diffusion Method and Agar Dilution Method for Sensitivity of Polymyxin B against Multi Drug Resistant Acinetobacter Baumannii. Pakistan Armed Forces Medical Journal, 69(5), 998–1003.
  • [22] Robertson, J., Swift, S., McGoverin, C., Vanholsbeeck, F. 2019. Optimisation of the protocol for the liVE/DEAD®BacLightTM bacterial viability kit for rapid determination of bacterial load. Frontiers in Microbiology, 10(APR). doi:10.3389/fmicb.2019.00801
  • [23] Karaboz, İ., Kayar, E., Akar, S. 2008. Flow Sitometri ve Kullanım Alanları. Elektronik Mikrobiyoloji Dergisi TR, Cilt: 06 Sayı: 2 Sayfa: 01-18.
  • [24] Kanev, M. O., Muranlı, F. D. G.2022. Flow sitometri ve kullanım alanları. Sakarya University Journal of Science, 20(1):33-38. Accessed May 19.
  • [25] Westfall, D. A., Krishnamoorthy, G., Wolloscheck, D., Sarkar, R., Zgurskaya, H. I., Rybenkov, V. V. 2017. Bifurcation kinetics of drug uptake by Gram-negative bacteria. PLoS ONE, 12(9), 1–18.
  • [26] Önalan, Ş, Seçkin, H. 2021. Identification and phylogenetic differences of newly isolated Streptomyces sp. Türk Tarım ve Doğa Bilimleri Dergisi, 8(3), 680–685.
  • [27] Zeina, B., Greenman, J., Purcell, W. M., Das, B. 2001. Killing of cutaneous microbial species by photodynamic therapy, British Journal of Dermatology, 144 274–278
  • [28] Mengeloglu, F. Z., Koçoǧlu, A. E., Çiçek, O. B., Özgümüş, C., Sandalli, E. E. 2021. Carriage of Class 1 and 2 Integrons in Acinetobacter Baumannii and Pseudomonas Aeruginosa Isolated from Clinical Specimens and a Novel Gene Cassette Array: BlaOXA-11-CmlA7.” Mikrobiyoloji Bülteni, 48 (1): 48–58.
  • [29] Zarakolu, P., Hasçelik, G., Ünal, S. 2006. Hastane enfeksiyonu etkeni gram negatif bakterilerin çeşitli antimikrobiyal ajanlara karşi duyarlilik durumu: hacettepe üniversitesi erişkin hastanesi mystic çalişmasi verisi (2000-2004). Mikrobiyoloji Bülteni, 40: 147-154
  • [30] Gaynes, R., Edwards, J. R. 2005. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clinical Infectious Diseases, 41: 848-54.
  • [31] Cossu, M., Ledda, L., Cossu, A. 2021. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Research International (Ottawa, Ont.), 144, 110358.
  • [32] Usacheva, M. N., Teichert, M. C., Biel, M. A. 2003. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. Journal of Photochemistry and Photobiology B: Biology, 71 87–98
  • [33] Kesici, D., Yıldırım, M. 2009. Fotodinamik Tedavi. SDÜ Tıp Fakültesi Dergisi, 7(4)
  • [34] Boran, R., Pamuk, A. M., Ugur, A.2018. In Vıtro Evaluatıon Of The Effectıveness Of Dıfferent Bodıpy Dyes As Photosensıtızer In Methıcıllın-Resıstant Staphylococcus Aureus Treatment. Mugla Journal of Science and Technology. 4(2): 191-197.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Asiye Yurttaş 0000-0002-6424-7411

Kamil Çınar 0000-0002-1192-6947

Yayımlanma Tarihi 20 Aralık 2022
Gönderilme Tarihi 29 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 13 Sayı: 3

Kaynak Göster

Vancouver Yurttaş A, Çınar K. P. Aeruginosa Bakterisinin Vitamin B Kompleksi ve Kırmızı Lazer Kullanılarak İnaktive Edilmesi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2022;13(3):353-6.

SDÜ Sağlık Bilimleri Dergisi, makalenin gönderilmesi ve yayınlanması dahil olmak üzere hiçbir aşamada herhangi bir ücret talep etmemektedir. Dergimiz, bilimsel araştırmaları okuyucuya ücretsiz sunmanın bilginin küresel paylaşımını artıracağı ilkesini benimseyerek, içeriğine anında açık erişim sağlamaktadır.