Research Article
BibTex RIS Cite

Elektromanyetik Radyasyonun (2.45 GHz) Lenfosit DNA Hasarına ve Hematolojik Parametrelere Etkisi: Vitamin C'nin Koruyucu Rolü

Year 2023, Volume: 14 Issue: 1, 34 - 43, 13.04.2023
https://doi.org/10.22312/sdusbed.1124139

Abstract

Amaç: Bu çalışmanın amacı, kanda hematolojik ve biyokimyasal değişikliklere neden olabilen 2.45 GHz elektromanyetik radyasyonun (EMR) etkilerini araştırmaktır. EMR maruziyetinin etkilerine karşı koruyucu özelliği olan Vitamin C'yi (Vit C) tercih ettik.
Materyal-Metot: Bu çalışma için 18 dişi Sprague Dawley sıçanı rastgele her birinde altı hayvan bulunan üç gruba ayrıldı: Kontrol, EMR ve EMR+Vit C grupları. Kontrol grubu: gavaj ile 30 gün boyunca 0.1 ml/gün salin; EMR grubu: EMR, 30 gün boyunca 1 saat/gün; EMR+Vit C grubu: EMR, 30 gün boyunca 1 saat/gün C vitamini 250 mg/kg/gün, gavaj ile. Beyaz Kan Hücresi (WBC), Nötrofil, Lenfosit, Monosit, Eozinofil, Bazofil, Kırmızı Kan Hücresi (RBC), Hemoglobin (Hb), Hematokrit (Htc), Ortalama Eritrosit Hacmi (MCV), Kırmızı Hücre Dağılım Genişliği-SD (RDW- SD), Kırmızı Hücre Dağılım Genişliği-CV (RDW-CV), Trombosit (PLT), Ortalama Trombosit Hacmi (MPV), Trombosit Dağılım Genişliği (PDW), Trombosit Krit (PCT) ve Trombosit Büyük Hücre Oranı (P-LCR) sayıları ölçülmüştür. Comet testi ile lenfosit DNA hasarı değerlendirildi, ayrıca malondialdehit (MDA) seviyesi ve katalaz (CAT) aktivitesi değerlendirildi.
Bulgular: Comet analiz skoru ve P-LCR sayıları EMR grubunda Kontrol grubuna göre arttı (p<0,05). C vitamini tedavisi sonrası comet analiz skorunda ve P-LCR sayılarında EMR grubuna göre azalma gözlemledik (p<0,05).
Sonuç: Sonuçlar, bir cep telefonu tarafından üretilen frekansta EMR'nin lenfosit DNA kırılmasına neden olduğunu ve P-LCR seviyesini artırdığını göstermektedir. C vitamini, EMF maruziyetinin neden olduğu lenfosit DNA hasarını ve P-LCR seviyesini azaltıyor gibi görünmektedir.

Supporting Institution

SÜLEYMAN DEMİREL ÜNİVERSİTESİ ÖĞRETİM ÜYESİ YETİŞTİRME PROGRAMI KOORDİNATÖRLÜĞÜ

Project Number

ÖYP05707-YL-13

References

  • [1] Koyu, A., Nazıroglu, M., Ozguner, F., Yilmaz, H. R., Uz, E., Cesur, G. 2005. Caffeic acid phenethyl ester modulates 1800 MHz microwave-ınduced oxidative stress in rat liver. Electromagnetic Biology and Medicine, 24: 1351-142.
  • [2] Maoquan, L. I., Yanyan, W., Yanwen, Z., Zhou, Z., Zhengping, Y. U. 2008. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. Journal of Radiation Research, 49: 163–170.
  • [3] Saygin, M., Asci, H., Ozmen, O., Cankara, F. N., Dincoglu, D., Ilhan, I. 2015. Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: the role of gallic acid. Environmental Toxicology, 31: 1771–1784.
  • [4] Crouzier, D., Testylier, G., Perrin, A., Debouzy, J. C. 2007. Which neurophysiologic effects at low level 2.45 GHz RF exposure? Pathologie-biologie, 55: 235–41.
  • [5] Shahin, S., Singh, V. P., Shukla, R. K., Dhawan, A., Gangwar, R. K., Singh, S. P., Chaturvedi, C. M. 2013. 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in Mice, Mus musculus. Applied Biochemistry and Biotechnology, 169: 1727–1751.
  • [6] Hossmann, K. A., Hermann, D. M. 2003. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics, 24: 49–62.
  • [7] Khaki, A. A., Khaki, A., Ahmadi, S. S. 2016. The effect of non-ionizing electromagnetic field with a frequency of 50 Hz in rat ovary: a transmission electron microscopy study. International Journal of Reproductive Biomedicine, 14: 125–132.
  • [8] Asghari, A., Khaki, A. A., Rajabzadeh, A., Khaki, A. 2016. A review on electromagnetic fields (EMFs) and the reproductive system. Electronic Physician, 8: 2655–2662.
  • [9] Shokri, S., Soltani, A., Kazemi, M., Sardari, M., Mofrad, F. B. 2015. Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: a time course study. Cell Journal, 17: 322–331.
  • [10] Yokus, B., Cakir, D. U., Akdag, M. Z., Sert, C., Mete, N. 2005. Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radical Research, 39: 317-323.
  • [11] Devrim, E., Erguder, İ. B., Kilicoglu, B., Yaykaslı, E., Cetin, R., Durak, I. 2008. Effects of electromagnetic radiation use on oxidant/antioxidant status and DNA turn-over enzyme activities in erythrocytes and heart, kidney, liver, and ovary tissues from rats: possible protective role of vitamin C. Toxicology Mechanisms and Methods,18: 679–683.
  • [12] Shah, A. M., Channon, K. M. 2004. Free radicals and redox signalling in cardiovascular disease. Heart, 90: 486–487.
  • [13] Saygin, M., Calıskan, S., Karahan, N., Koyu, A., Gumral, N., Uguz, A. C. 2001. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicology and Industrial Health, 27: 455–463.
  • [14] Carroll, R. C., Zukin, R. S. 2002. NMDA-receptor trafficking and targetting: İmplications for synaptic transmission and plasticity. Trends in Neuroscience, 25: 571-577.
  • [15] Phillips, J. L., Singh, N. P., Lai, H. 2009. Electromagnetic fields and DNA damage. Pathophysiology, 16: 79-88.
  • [16] Oral, B., Guney, M., Ozguner, F., Karahan, N., Mungan, T., Comlekci, S., Cesur, G. 2006. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Advances in Therapy, 23: 957–973.
  • [17] Carr, A. C., Frei, B. 1999. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. The American Journal of Clinical Nutrition, 69: 1086–1107.
  • [18] Du, J., Cullen, J. J., Buettner, G. R. 2012. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochimica et Biophysica Acta- Reviews on Cancer, 1826: 443–457. [19] Covarrubias-Pinto, A., Acun˜a, A. I., Beltra´n, F. A., Díaz, L. T., Castro, M. A. 2015. Old things new view: ascorbic acid protects the brain in neurodegenerative disorders. International Journal of Molecular Sciences, 16: 28194–28217.
  • [20] Faraone, A., Luengas, W., Chebrolu, S., Ballen, M., Bit-Babik, G., Gessner, A. V., Kanda, M. Y., Babij, T., Swicord, M. L., Chou, C. K. 2006. Radiofrequency dosimetry for the Ferris-wheel mouse exposure system. Radiation Research, 165: 105–112.
  • [21] Aebi, H. 1984. Catalase in Vitro. Methods Enzymology,105, 121-126.
  • [22] Collins, A. R. 2014. Measuring oxidative damage to DNA and its repair with the comet assay. Biochimica et Biophysica Acta- Reviews on Cancer,1840: 794–800.
  • [23] Bausinger, J., Speit, G. 2016. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay. Mutagenesis, 31: 567–572.
  • [24] Moustafa, Y. M., Moustafa, R. M., Belacy, A., Abou-El-Ela, S. H., Ali, F. M. 2001. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. Journal of pharmaceutical and biomedical analysis, 26: 605-608.
  • [25] Gumral, N., Naziroglu, M., Koyu, A., Ongel, K., Celik, O., Saygin, M., Flores-Arce, M. F. 2009. Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biological trace element research, 132: 153-163.
  • [26] Aydin, B., Akar, A. 2011. Effects of a 900-MHz electromagnetic field on oxidative stress parameters in rat lymphoid organs, polymorphonuclear leukocytes and plasma. Archives of medical research, 42.4:261-267.
  • [27] Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H. W. 2003. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. International archives of occupational and environmental health, 76: 431-436.
  • [28] Waldmann, P., Bohnenberger, S., Greinert, R., Hermann-Then, B., Heselich, A., Klug, S. J., Blettner, M. 2013. Influence of GSM signals on human peripheral lymphocytes: study of genotoxicity. Radiation research, 179: 243-253.
  • [29] Halazonetis, T. D., Gorgoulis, V. G., Bartek, J. 2008. An oncogene-induced DNA damage model for cancer development. Science, 319: 1352-1355.
  • [30] Franzellitti, S., Valbonesi, P., Ciancaglini, N., Biondi, C., Contin, A., Bersani, F., Fabbri, E. 2010. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 683: 35-42.
  • [31] Cho, S., Lee, Y., Lee, S., Choi, Y. J., Chung, H. W. 2014. Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug and chemical toxicology, 37: 440-447. [32] Xu, S., Chen, G., Chen, C., Sun, C., Zhang, D., Murbach, M., Xu, Z. 2013. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One, 8: 54906.
  • [33] Aziz, I. A., El-Khozondar, H. J., Shabat, M., Elwasife, M., Mohamed-Osman, A. 2010. Effect of electromagnetic field on body weight and blood indices in albino rats and the therapeutic action of vitamin C or E. Romanian Journal of Biophysics, 20: 235-244.
  • [34] Repacholı, M. H., Basten, A., Gebskı, V., Noonan, D., Fınnıe, J., Harrıs, A. W. 1997. Lymphomas in Eµ-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields, Radiation Research, 147: 631–640.

Effect of Electromagnetic Radiation (2.45 GHz) on Lymphocyte DNA Damage and Hematological Parameters: The Protective Role of Vitamin C

Year 2023, Volume: 14 Issue: 1, 34 - 43, 13.04.2023
https://doi.org/10.22312/sdusbed.1124139

Abstract

Objective: The aim of this study was to investigate the effects of 2.45 GHz electromagnetic radiation (EMR), which may cause hematological and biochemical changes in blood. We preferred Vitamin C (Vit C) for its protective properties effects against the effects of EMR exposure.

Material and Method: For this study, 18 female Sprague Dawley rats were randomly divided into three groups with six animals in each: Sham, EMR and EMR+Vit C groups. Sham group: 0.1ml/day saline for 30 days, by oral gavage; EMR group: EMR, 1h/day for 30 days; EMR+Vit C group: EMR, 1h/day for 30 days+Vit C 250 mg/kg/daily, by oral gavage. White Blood Cell (WBC), Neutrophil, Lymphocyte, Monocyte, Eosinophil, Basophil, Red Blood Cell (RBC), Hemoglobin (Hb), Hematocrit (Htc), Mean Erythrocyte Volume (MCV), Red Cell Distribution Width-SD (RDW-SD), Red Cell Distribution Width-CV (RDW-CV), Thrombocyte (PLT), Mean Platelet Volume (MPV), Platelet Distribution Width (PDW), Platelet Crit (PCT) and Platelet Large Cell Ratio (P-LCR) counts were measured. Lymphocyte DNA damage was assessed by comet assay, additionally, malondialdehyde (MDA) level and catalase (CAT) activity were evaluated.

Results: Comet analysis score and P-LCR counts were increased in EMR group compared to Sham group (p<0.05). We observed a decrease in comet analysis score and P-LCR counts after Vit C treatment compared to the finding in EMR group (p<0.05).

Conclusions: The results suggest that EMR at the frequency generated by a cell phone causes lymphocyte DNA break and increases P-LCR level. Vit C seems to reduce lymphocyte DNA damage and P-LCR level caused by EMF exposure.

Project Number

ÖYP05707-YL-13

References

  • [1] Koyu, A., Nazıroglu, M., Ozguner, F., Yilmaz, H. R., Uz, E., Cesur, G. 2005. Caffeic acid phenethyl ester modulates 1800 MHz microwave-ınduced oxidative stress in rat liver. Electromagnetic Biology and Medicine, 24: 1351-142.
  • [2] Maoquan, L. I., Yanyan, W., Yanwen, Z., Zhou, Z., Zhengping, Y. U. 2008. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. Journal of Radiation Research, 49: 163–170.
  • [3] Saygin, M., Asci, H., Ozmen, O., Cankara, F. N., Dincoglu, D., Ilhan, I. 2015. Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: the role of gallic acid. Environmental Toxicology, 31: 1771–1784.
  • [4] Crouzier, D., Testylier, G., Perrin, A., Debouzy, J. C. 2007. Which neurophysiologic effects at low level 2.45 GHz RF exposure? Pathologie-biologie, 55: 235–41.
  • [5] Shahin, S., Singh, V. P., Shukla, R. K., Dhawan, A., Gangwar, R. K., Singh, S. P., Chaturvedi, C. M. 2013. 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in Mice, Mus musculus. Applied Biochemistry and Biotechnology, 169: 1727–1751.
  • [6] Hossmann, K. A., Hermann, D. M. 2003. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics, 24: 49–62.
  • [7] Khaki, A. A., Khaki, A., Ahmadi, S. S. 2016. The effect of non-ionizing electromagnetic field with a frequency of 50 Hz in rat ovary: a transmission electron microscopy study. International Journal of Reproductive Biomedicine, 14: 125–132.
  • [8] Asghari, A., Khaki, A. A., Rajabzadeh, A., Khaki, A. 2016. A review on electromagnetic fields (EMFs) and the reproductive system. Electronic Physician, 8: 2655–2662.
  • [9] Shokri, S., Soltani, A., Kazemi, M., Sardari, M., Mofrad, F. B. 2015. Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: a time course study. Cell Journal, 17: 322–331.
  • [10] Yokus, B., Cakir, D. U., Akdag, M. Z., Sert, C., Mete, N. 2005. Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radical Research, 39: 317-323.
  • [11] Devrim, E., Erguder, İ. B., Kilicoglu, B., Yaykaslı, E., Cetin, R., Durak, I. 2008. Effects of electromagnetic radiation use on oxidant/antioxidant status and DNA turn-over enzyme activities in erythrocytes and heart, kidney, liver, and ovary tissues from rats: possible protective role of vitamin C. Toxicology Mechanisms and Methods,18: 679–683.
  • [12] Shah, A. M., Channon, K. M. 2004. Free radicals and redox signalling in cardiovascular disease. Heart, 90: 486–487.
  • [13] Saygin, M., Calıskan, S., Karahan, N., Koyu, A., Gumral, N., Uguz, A. C. 2001. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicology and Industrial Health, 27: 455–463.
  • [14] Carroll, R. C., Zukin, R. S. 2002. NMDA-receptor trafficking and targetting: İmplications for synaptic transmission and plasticity. Trends in Neuroscience, 25: 571-577.
  • [15] Phillips, J. L., Singh, N. P., Lai, H. 2009. Electromagnetic fields and DNA damage. Pathophysiology, 16: 79-88.
  • [16] Oral, B., Guney, M., Ozguner, F., Karahan, N., Mungan, T., Comlekci, S., Cesur, G. 2006. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Advances in Therapy, 23: 957–973.
  • [17] Carr, A. C., Frei, B. 1999. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. The American Journal of Clinical Nutrition, 69: 1086–1107.
  • [18] Du, J., Cullen, J. J., Buettner, G. R. 2012. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochimica et Biophysica Acta- Reviews on Cancer, 1826: 443–457. [19] Covarrubias-Pinto, A., Acun˜a, A. I., Beltra´n, F. A., Díaz, L. T., Castro, M. A. 2015. Old things new view: ascorbic acid protects the brain in neurodegenerative disorders. International Journal of Molecular Sciences, 16: 28194–28217.
  • [20] Faraone, A., Luengas, W., Chebrolu, S., Ballen, M., Bit-Babik, G., Gessner, A. V., Kanda, M. Y., Babij, T., Swicord, M. L., Chou, C. K. 2006. Radiofrequency dosimetry for the Ferris-wheel mouse exposure system. Radiation Research, 165: 105–112.
  • [21] Aebi, H. 1984. Catalase in Vitro. Methods Enzymology,105, 121-126.
  • [22] Collins, A. R. 2014. Measuring oxidative damage to DNA and its repair with the comet assay. Biochimica et Biophysica Acta- Reviews on Cancer,1840: 794–800.
  • [23] Bausinger, J., Speit, G. 2016. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay. Mutagenesis, 31: 567–572.
  • [24] Moustafa, Y. M., Moustafa, R. M., Belacy, A., Abou-El-Ela, S. H., Ali, F. M. 2001. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. Journal of pharmaceutical and biomedical analysis, 26: 605-608.
  • [25] Gumral, N., Naziroglu, M., Koyu, A., Ongel, K., Celik, O., Saygin, M., Flores-Arce, M. F. 2009. Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biological trace element research, 132: 153-163.
  • [26] Aydin, B., Akar, A. 2011. Effects of a 900-MHz electromagnetic field on oxidative stress parameters in rat lymphoid organs, polymorphonuclear leukocytes and plasma. Archives of medical research, 42.4:261-267.
  • [27] Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H. W. 2003. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. International archives of occupational and environmental health, 76: 431-436.
  • [28] Waldmann, P., Bohnenberger, S., Greinert, R., Hermann-Then, B., Heselich, A., Klug, S. J., Blettner, M. 2013. Influence of GSM signals on human peripheral lymphocytes: study of genotoxicity. Radiation research, 179: 243-253.
  • [29] Halazonetis, T. D., Gorgoulis, V. G., Bartek, J. 2008. An oncogene-induced DNA damage model for cancer development. Science, 319: 1352-1355.
  • [30] Franzellitti, S., Valbonesi, P., Ciancaglini, N., Biondi, C., Contin, A., Bersani, F., Fabbri, E. 2010. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 683: 35-42.
  • [31] Cho, S., Lee, Y., Lee, S., Choi, Y. J., Chung, H. W. 2014. Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug and chemical toxicology, 37: 440-447. [32] Xu, S., Chen, G., Chen, C., Sun, C., Zhang, D., Murbach, M., Xu, Z. 2013. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One, 8: 54906.
  • [33] Aziz, I. A., El-Khozondar, H. J., Shabat, M., Elwasife, M., Mohamed-Osman, A. 2010. Effect of electromagnetic field on body weight and blood indices in albino rats and the therapeutic action of vitamin C or E. Romanian Journal of Biophysics, 20: 235-244.
  • [34] Repacholı, M. H., Basten, A., Gebskı, V., Noonan, D., Fınnıe, J., Harrıs, A. W. 1997. Lymphomas in Eµ-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields, Radiation Research, 147: 631–640.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Araştırma Articlesi
Authors

Oğuzhan Kavrık 0000-0003-1694-8931

Mustafa Saygın 0000-0003-4925-3503

Rahime Aslankoç 0000-0003-2664-9572

Nurhan Gümral 0000-0002-8141-4533

Halil Aşcı 0000-0002-1545-035X

Fatma Nihan Cankara 0000-0002-2367-6412

Project Number ÖYP05707-YL-13
Publication Date April 13, 2023
Submission Date May 31, 2022
Published in Issue Year 2023 Volume: 14 Issue: 1

Cite

Vancouver Kavrık O, Saygın M, Aslankoç R, Gümral N, Aşcı H, Cankara FN. Elektromanyetik Radyasyonun (2.45 GHz) Lenfosit DNA Hasarına ve Hematolojik Parametrelere Etkisi: Vitamin C’nin Koruyucu Rolü. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2023;14(1):34-43.

SDÜ Sağlık Bilimleri Dergisi, makalenin gönderilmesi ve yayınlanması dahil olmak üzere hiçbir aşamada herhangi bir ücret talep etmemektedir. Dergimiz, bilimsel araştırmaları okuyucuya ücretsiz sunmanın bilginin küresel paylaşımını artıracağı ilkesini benimseyerek, içeriğine anında açık erişim sağlamaktadır.