Araştırma Makalesi
BibTex RIS Kaynak Göster

Bilgisayarlı Tomografi İle Yapılan Perkütan Torasik Kitle Biyopsilerinde Lenfositlerdeki DNA Hasarının Değerlendirilmesi

Yıl 2023, Cilt: 14 Sayı: 2, 244 - 252, 15.08.2023
https://doi.org/10.22312/sdusbed.1287546

Öz

Amaç: Son yüzyılda radyasyonun tıbbi ve endüstriyel kullanımlarındaki artış, insanların daha yüksek dozlarda radyasyona maruz kalmasına neden olmuştur. Yüksek doz radyasyonun insan sağlığına zararları bilinmesine rağmen düşük doz radyasyonun sağlık üzerindeki etkileri henüz tam olarak aydınlatılamamıştır. Bu çalışmada, bilgisayarlı tomografi (BT) ile perkütan torasik kitle biyopsisi planlanan akciğer, plevra/torasik duvar kitleleri olan hastalarda lenfositlerdeki DNA hasarını araştırmayı amaçladık.

Materyal Metod: Bir kamu kurumu hastanesinin Radyoloji Kliniğine akciğer, plevra/torasik duvar kitleleri ile başvuran ve BT eşliğinde perkütan biyopsi planlanan 16 hasta çalışmaya dahil edildi. Tüm biyopsiler 128 kesitli CT cihazı (Definition AS, Siemens Medical Solutions, Forchheim, Germany) ile yapıldı. Hastalardan biyopsi öncesi ve sonrası alınan venöz kan örneklerinde comet assay ile lenfosit analizi yapıldı. DNA hasarı, görüntüleme analiz yöntemi ile kantitatif olarak değerlendirildi.

Bulgular: Çalışma grubunun BT analiz verileri değerlendirildiğinde; ortalama tarama mesafesi 19,92±3,60 sn, ortalama toplam miliamper-saniye 807,43±304,51 ve ortalama doz-uzunluk çarpımı 765,44±278,36 mGy.cm olarak bulundu. İşlem öncesi göç yapan hücrelerde ortalama comet skoru 200,50±40,54 ve işlem sonrası göç yapan hücrelerde 237,37±27,85 olarak tespit edildi. İşlem sonrası comet skorları, işlem öncesi comet skorlarına göre anlamlı olarak arttı (p=0,038).

Sonuç: BT eşliğinde perkütan biyopsi yapılan hastalarda işlem sonrası DNA hasarı saptandı.

Destekleyen Kurum

Yok

Kaynakça

  • [1] McLean, A.R., Adlen, E.K., Cardis, E., Elliott, A., Goodhead, D.T., Harms-Ringdahl, M., et al. 2017. A restatement of the natural science evidence base concerning the health effects of low-level ionizing radiation. Proc. R. Soc., 284: 1-7.
  • [2] Tang, F.R., Loganovsky, K. 2018. Low dose or low dose rate ionizing radiation-induced health effect in the human. J. Environ.Raidoact., 192: 32–47.
  • [3] Jones, A.E., Kline, J.A. 2003. Availability of technology to evaluate for pulmonary embolism in academic emergency departments in the United States. J Thromb Haemost., 1: 2240-2.
  • [4] Richman, P.B., Courtney, D.M., Friese, J., Matthews, J., Field, A., Petri, R., et al. 2004. Prevalence and significance of nonthromboembolic findings on chest computed tomography angiography performed to rule out pulmonary embolism: a multicenter study of 1,025 emergency department patients. Acad Emerg Med, 1: 642-647.
  • [5] Webb, W. R., Higgins, C. B. 2011. Thoracic Imaging: Pulmonary and Cardiovascular Radiology. Lippincott Williams & Wilkins, 27: 656-682.
  • [6] Karabas, H. C., Ozcan, I., Sener, L., Guler, S., Albeniz, I., Erdem, T. 2019. Evaluation of cell and DNA damage induced by panoramic radiography. Nigerian Journal of Clinical Practise, 22 (8): 1041-1048.
  • [7] Vodicka, P., Vodenkova, S., Opattova, A., Vodickova, L. 2019. DNA damage and repair measured by comet assay in cancer patients. Mutat Res Gen Tox En, 843: 95–110.
  • [8] Kuchařová, M., Hronek, M., Rybáková, K., Zadák, Z., Štětina, R., Josková, V., et al. 2019. Comet Assay and Its Use for Evaluating Oxidative DNA Damage in Some Pathological States. Physiol. Res., 68: 1-15.
  • [9] Kumaravel, T.S., Jha, A.N. 2006. Reliable Comet assay measurements for detecting DNA damageinduced by ionising radiation and chemicals. Mutation Research, 605: 7-16.
  • [10] Ostling, O., Johanson, K.J. 1984. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res Commun, 123: 291-298.
  • [11] Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L. 1998. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 75: 184-191.
  • [12] Collins, A.R. 2004. The comet assay for DNA damage and repair. Molecular Biotechnology, 26: 249–261.
  • [13] Carolina, A., Sozua, F., Yujra, V.Q., Pisani, L.P., Viana, M.D.B., Castro, G.M.D., et al. 2019. The Use of SingleCell Comet Assay on Oral Cells: A Critical Review. Anticancer Res, 39: 4011-4017.
  • [14] Hininger, I., Chollat-Namy, A., Sauvaigo, S., Osman, M., Faure, H., Cadet, J., et al. 2004. Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers. Mutation Res, 558: 75–80.
  • [15] Hausleiter, J., Meyer, T., Hadamitzky, M., Huber, E., Zanki, M., Martinoff, S., et al. 2006. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation, 113: 1305-1310.
  • [16] Kaur, S., Sangeeta, G.K.K., Gautam, N. 2017. Assessment of Radiation Induced DNA Damage in Human Peripheral Blood Lymphocytes Using COMET Assay. Int. J. Life Sci Scienti. Res, 3 (4): 1208-1214.
  • [17] Hofer, K.G., Lin, X., Schneiderman, M.H. 2000. Paradoxical effects of iodine-125 decays in parent and daughter DNA: A new target model for radiation damage. Radiat. Res., 153: 428–435.
  • [18] Lara, C.M., Hill, M.A., Jenner, T.J., Papworth, D., O’Neill, P. 2001. Dependence of the yield of DNA double strand breaks in Chinese hamster V79-4 cells on photon energy of characteristic ultrasoft X rays. Radiat. Res., 155: 440–448.
  • [19] Nikjoo, H., Neill, P.O., Wilson, W.E., Goodhead, D.T. 2001. Computational Approach for Determining the Spectrum of DNA Damage Induced by Ionizing Radiation. Radiation Res., 156:577-583.
  • [20] Gloss, L.M., Placek, B.J. 2002. The effect of salts on the stability of the H2A–H2B histone dimer. Biochem., 41 (50): 14951-59.
  • [21] Santivasi, W.L., Xia, F. 2014. Ionizing Radiation-Induced DNA Damage, Response, and Repair. Antioxid. Redox Signal., 21 (2): 251–259.
  • [22] Touil, N., Aka, P.V., Buchet, J.P., Thierens, H., Kirsch-Volders, M. 2002. Assessment of genotoxic effects related to chronic low level exposure to ionizing radiation using biomarkers for DNA damage and repair. Mutagen, 7 (3): 223-32.
  • [23] Dobrzyn´ska, M.A., Pachockı, K.A., Gajowık, A., Radzikowska, J., Sackiewicz, A. 2014. The Effect Occupational Exposure to Ionizing Radiation on the DNA Damage in Peripheral Blood Leukocytes of Nuclear Medicine Personnel. J Occup Health, 56: 379–386.
  • [24] Garaj – Vrhovac, V., Kopjar, N. 2003. The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation. Mutagenesis, 8 (3): 265-271.
  • [25] Mikloš, M., Gajski, G., Garaj – Vrhovac, V. 2009. Usage of the standard and modified comet assay in assessment of DNA damage in human lymphocytes after exposure to ionizing radiation. Radiol Oncol, 43 (2): 97-107.
  • [26] He, J.L., Chen, W.L., Jin, L.F., Jin, H.Y. 2000. Comparative evaluation of the in vitro micronucleus test and the comet assay for the detection of genotoxiceffects of X-ray radiation. Mutat Res, 469 (2): 223-31.
  • [27] Wilkins, R.C., Kutzner, B.C., Truong, M., Sanchez-Dardon, J., McLean, J.R.N. 2002. Analysis of radiationinduced apoptosis in human lymphocytes: flow cytometry using Annexin V and propidiumiodide versus the neutral comet assay. Cytometry, 48 (1): 14-9.

Evaluation of DNA Damage in Lymphocytes in Percutaneous Thoracic Mass Biopsies Performed with Computed Tomography

Yıl 2023, Cilt: 14 Sayı: 2, 244 - 252, 15.08.2023
https://doi.org/10.22312/sdusbed.1287546

Öz

Purpose: The increase in the medical and industrial uses of radiation in the last century has caused people to be exposed to higher doses of radiation. Although the harms of high-dose radiation on human health are known, the effects of low-dose radiation on health have not yet been fully elucidated. In this study, we aimed to investigate DNA damage in lymphocytes in patients with lung, pleura/thoracic wall masses planned for percutaneous thoracic mass biopsy with computed tomography (CT).

Methods: Sixteen patients referred to the Radiology Clinic of a public institution hospital with lung, pleura/thoracic wall masses and scheduled to undergo a CT-guided percutaneous biopsy were included in the study. All the biopsies were performed with a 128-slice CT device (Definition AS, Siemens Medical Solutions, Forchheim, Germany). Lymphocytes were analyzed using the comet assay in the venous blood samples taken from the patients before and after the biopsy procedure. DNA damage was quantitatively evaluated with the imaging analysis method.

Results: In the CT analysis data of the study group, the mean scan distance was found to be 19.92±3.60 sec, the mean total milliampere-seconds was 807.43±304.51, and the mean dose-length product was 765.44±278.36 mGy.cm. The mean comet score was 200.50±40.54 for the cells that migrated before the procedure and 237.37±27.85 for those migrating after the procedure. The post-procedure comet scores significantly increased compared to the pre-procedure comet scores (p=0.038).

Conclusion: Post-procedure DNA damage was detected in patients who underwent CT-guided percutaneous biopsy.

Kaynakça

  • [1] McLean, A.R., Adlen, E.K., Cardis, E., Elliott, A., Goodhead, D.T., Harms-Ringdahl, M., et al. 2017. A restatement of the natural science evidence base concerning the health effects of low-level ionizing radiation. Proc. R. Soc., 284: 1-7.
  • [2] Tang, F.R., Loganovsky, K. 2018. Low dose or low dose rate ionizing radiation-induced health effect in the human. J. Environ.Raidoact., 192: 32–47.
  • [3] Jones, A.E., Kline, J.A. 2003. Availability of technology to evaluate for pulmonary embolism in academic emergency departments in the United States. J Thromb Haemost., 1: 2240-2.
  • [4] Richman, P.B., Courtney, D.M., Friese, J., Matthews, J., Field, A., Petri, R., et al. 2004. Prevalence and significance of nonthromboembolic findings on chest computed tomography angiography performed to rule out pulmonary embolism: a multicenter study of 1,025 emergency department patients. Acad Emerg Med, 1: 642-647.
  • [5] Webb, W. R., Higgins, C. B. 2011. Thoracic Imaging: Pulmonary and Cardiovascular Radiology. Lippincott Williams & Wilkins, 27: 656-682.
  • [6] Karabas, H. C., Ozcan, I., Sener, L., Guler, S., Albeniz, I., Erdem, T. 2019. Evaluation of cell and DNA damage induced by panoramic radiography. Nigerian Journal of Clinical Practise, 22 (8): 1041-1048.
  • [7] Vodicka, P., Vodenkova, S., Opattova, A., Vodickova, L. 2019. DNA damage and repair measured by comet assay in cancer patients. Mutat Res Gen Tox En, 843: 95–110.
  • [8] Kuchařová, M., Hronek, M., Rybáková, K., Zadák, Z., Štětina, R., Josková, V., et al. 2019. Comet Assay and Its Use for Evaluating Oxidative DNA Damage in Some Pathological States. Physiol. Res., 68: 1-15.
  • [9] Kumaravel, T.S., Jha, A.N. 2006. Reliable Comet assay measurements for detecting DNA damageinduced by ionising radiation and chemicals. Mutation Research, 605: 7-16.
  • [10] Ostling, O., Johanson, K.J. 1984. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res Commun, 123: 291-298.
  • [11] Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L. 1998. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 75: 184-191.
  • [12] Collins, A.R. 2004. The comet assay for DNA damage and repair. Molecular Biotechnology, 26: 249–261.
  • [13] Carolina, A., Sozua, F., Yujra, V.Q., Pisani, L.P., Viana, M.D.B., Castro, G.M.D., et al. 2019. The Use of SingleCell Comet Assay on Oral Cells: A Critical Review. Anticancer Res, 39: 4011-4017.
  • [14] Hininger, I., Chollat-Namy, A., Sauvaigo, S., Osman, M., Faure, H., Cadet, J., et al. 2004. Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers. Mutation Res, 558: 75–80.
  • [15] Hausleiter, J., Meyer, T., Hadamitzky, M., Huber, E., Zanki, M., Martinoff, S., et al. 2006. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation, 113: 1305-1310.
  • [16] Kaur, S., Sangeeta, G.K.K., Gautam, N. 2017. Assessment of Radiation Induced DNA Damage in Human Peripheral Blood Lymphocytes Using COMET Assay. Int. J. Life Sci Scienti. Res, 3 (4): 1208-1214.
  • [17] Hofer, K.G., Lin, X., Schneiderman, M.H. 2000. Paradoxical effects of iodine-125 decays in parent and daughter DNA: A new target model for radiation damage. Radiat. Res., 153: 428–435.
  • [18] Lara, C.M., Hill, M.A., Jenner, T.J., Papworth, D., O’Neill, P. 2001. Dependence of the yield of DNA double strand breaks in Chinese hamster V79-4 cells on photon energy of characteristic ultrasoft X rays. Radiat. Res., 155: 440–448.
  • [19] Nikjoo, H., Neill, P.O., Wilson, W.E., Goodhead, D.T. 2001. Computational Approach for Determining the Spectrum of DNA Damage Induced by Ionizing Radiation. Radiation Res., 156:577-583.
  • [20] Gloss, L.M., Placek, B.J. 2002. The effect of salts on the stability of the H2A–H2B histone dimer. Biochem., 41 (50): 14951-59.
  • [21] Santivasi, W.L., Xia, F. 2014. Ionizing Radiation-Induced DNA Damage, Response, and Repair. Antioxid. Redox Signal., 21 (2): 251–259.
  • [22] Touil, N., Aka, P.V., Buchet, J.P., Thierens, H., Kirsch-Volders, M. 2002. Assessment of genotoxic effects related to chronic low level exposure to ionizing radiation using biomarkers for DNA damage and repair. Mutagen, 7 (3): 223-32.
  • [23] Dobrzyn´ska, M.A., Pachockı, K.A., Gajowık, A., Radzikowska, J., Sackiewicz, A. 2014. The Effect Occupational Exposure to Ionizing Radiation on the DNA Damage in Peripheral Blood Leukocytes of Nuclear Medicine Personnel. J Occup Health, 56: 379–386.
  • [24] Garaj – Vrhovac, V., Kopjar, N. 2003. The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation. Mutagenesis, 8 (3): 265-271.
  • [25] Mikloš, M., Gajski, G., Garaj – Vrhovac, V. 2009. Usage of the standard and modified comet assay in assessment of DNA damage in human lymphocytes after exposure to ionizing radiation. Radiol Oncol, 43 (2): 97-107.
  • [26] He, J.L., Chen, W.L., Jin, L.F., Jin, H.Y. 2000. Comparative evaluation of the in vitro micronucleus test and the comet assay for the detection of genotoxiceffects of X-ray radiation. Mutat Res, 469 (2): 223-31.
  • [27] Wilkins, R.C., Kutzner, B.C., Truong, M., Sanchez-Dardon, J., McLean, J.R.N. 2002. Analysis of radiationinduced apoptosis in human lymphocytes: flow cytometry using Annexin V and propidiumiodide versus the neutral comet assay. Cytometry, 48 (1): 14-9.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Veysel Atilla Ayyıldız 0000-0003-0252-9023

Rahime Aslankoç 0000-0001-9516-0864

Saygın Mustafa 0000-0003-4925-3503

Demet Gündüz 0000-0003-4358-984X

Yayımlanma Tarihi 15 Ağustos 2023
Gönderilme Tarihi 25 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 14 Sayı: 2

Kaynak Göster

Vancouver Ayyıldız VA, Aslankoç R, Mustafa S, Gündüz D. Evaluation of DNA Damage in Lymphocytes in Percutaneous Thoracic Mass Biopsies Performed with Computed Tomography. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2023;14(2):244-52.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.