Research Article
BibTex RIS Cite

PARKİNSON HASTALARINDA FARKLI DENGE DURUMLARINA GÖRE GÖVDE KONTROLÜNÜN, EL FONKSİYONUNUN ve EL REAKSİYON ZAMANININ KARŞILAŞTIRILMASI

Year 2023, , 380 - 387, 23.09.2023
https://doi.org/10.17343/sdutfd.1295139

Abstract

Amaç
Bu çalışmanın amacı Parkinson hastalarında farklı
denge durumlarına göre gövde kontrolünün, el fonksiyonlarının
ve reaksiyon zamanının karşılaştırılmasıdır.
Gereç ve Yöntem
Çalışmaya 6’sı kadın toplamda 25 Parkinson hastası
dahil edildi. Bireyler Berg Denge Ölçeği (BDÖ) kesme
puanlarına göre Orta risk grubu (n=11) ve Düşük risk
grubu (n=14) olarak ikiye ayrıldı. Gövde kontrolü ve
fonksiyonlarını değerlendirmek için statik oturma ve dinamik
oturma dengesi, gövde koordinasyonu alt parametrelerinden
oluşan Gövde Bozukluk Ölçeği (GBÖ)
ile değerlendirildi. El kavrama kuvveti Jamar el dinamometresi
ile, el fonksiyonları Purdue Pegboard testi
ile el reaksiyon zamanı ise Ruler Drop testi ile bilateral
ölçüldü.
Bulgular
Gövde kontrolü için gruplar karşılaştırıldığında gövde
bozukluk ölçeği toplam skorunda ve dinamik oturma
alt parametresinde düşük risk grubu lehine anlamlı
fark vardı (p=0.030, p=0.005). Ancak statik oturma ve
koordinasyon alt parametrelerinde gruplar arası fark
yoktu (p=0.181, p=0.558). Her iki elin el kavrama kuvvetinde,
el becerisinde ve reaksiyon zamanında gruplar
arası fark görülmedi (p>0.05).
Sonuç
Parkinson hastalarında orta riskli denge grubunun dinamik
oturma dengesi ve gövde bozukluğu düşük risk
grubundan kötü iken, el fonksiyonları ve reaksiyon
zamanı benzerdir. Parkinsonlu bireylerde proksimal
stabilizasyonda ve dengede kilit rol oynayan gövde ve
distal mobilite için el fonksiyonlarının incelendiği daha
ileri çalışmalara ihtiyaç vardır.

Project Number

-

References

  • 1. Riya M, Palkar A, Kumar A. Effect of Motor Imagery on Hand Function in Parkinson’s Disease: A Pilot Randomised Control Trial. Indian Journal of Physiotherapy & Occupational Therapy. 2022;16(1):86-94.
  • 2. Paz TdSR, de Britto VLS, Yamaguchi B, Israel VL, Swarowsky A, Correa CL. Hand function as predictor of motor symptom severity in individuals with Parkinson’s Disease. Gerontology. 2021;67(2):160-7.
  • 3. Kandaswamy D, MuthuKumar M, Alexander M, Prabhu K, Krothapalli SB. Quantitative assessment of hand dysfunction in patients with early Parkinson’s Disease and focal hand dystonia. Journal of movement disorders. 2018;11(1):35.
  • 4. Fellows SJ, Noth J. Grip force abnormalities in de novo Parkinson’s Disease. Movement disorders. 2004;19(5):560-5.
  • 5. Steinbart E, Learning J. Parkinson’s disease: Challenges, progress and hope. Lakeway, Texas: National Center of Continuing Education; 2013.
  • 6. Pohar SL, Jones CA. The burden of Parkinson disease (PD) and concomitant comorbidities. Archives of gerontology and geriatrics. 2009;49(2):317-21.
  • 7. Canning CG, Allen NE, Nackaerts E, Paul SS, Nieuwboer A, Gilat M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nature Reviews Neurology. 2020;16(8):409-25.
  • 8. Gera G, Freeman D, Blackinton MT, Horak F, King L. Identification of balance deficits in people with Parkinson disease; is the sensory organization test enough? International journal of physical medicine & rehabilitation. 2016 Feb;4(1):322. doi: 10.4172/2329-9096.1000322.
  • 9. Kalkan AC, Kahraman T, Ugut BO, Colakoglu BD, Genc A. A comparison of the relationship between manual dexterity and postural control in young and older individuals with Parkinson’s Disease. Journal of Clinical Neuroscience. 2020;75:89-93.
  • 10. Rosenblum S, Josman N. The relationship between postural control and fine manual dexterity. Physical & occupational therapy in pediatrics. 2003;23(4):47-60.
  • 11. Evrim G, Dönmez B, Çakmur R, Balci B. Erken Evre Parkinson Hastalarında Pilates ve Elastik Bantlama Uygulamalarının El Fonksiyonları, Postüral Kontrol Ve Gövde Kontrolü Üzerine Etkisi-Randomize Kontrollü Çalışma. Balıkesir Sağlık Bilimleri Dergisi. 2020;9(1):29-36.
  • 12. Yang S-H, Chung E-J, Lee J, Lee S-H, Lee B-H. The effect of trunk stability training based on visual feedback on trunk stability, balance, and upper limb function in stroke patients: A randomized control trial. Healthcare. 2021;9(5):532. doi: 10.3390/ healthcare9050532.
  • 13. Korkmaz NC, Akman TC, Oren GK, Bir LS. Trunk control: The essence for upper limb functionality in patients with multiple sclerosis. Multiple sclerosis and related disorders. 2018;24:101-6.
  • 14. Fatih S, Karaali HK, Ilgin D, Yüksel E, Özcan Ö, Arslan T. Relationship between postural control and hand function in the subjects aged 65 years and over. Fizyoterapi Rehabilitasyon. 2018;29(1):33-8.
  • 15. Huang J-R, Zhang F, Wen F-F, Chen F-J, Zhu T-T. Effect of biofeedback combined with task-oriented training on hand function, Gesell scale score and balance ability in children with spastic cerebral palsy. Journal of Sichuan University Medical Science Edition. 2020;51(3):428-33.
  • 16. Mahieux F, Michelet D, Manifacier M-J, Boller F, Fermanian J, Guillard A. Mini-Mental Parkinson: first validation study of a new bedside test constructed for Parkinson’s Disease. Behavioural neurology. 1995;8(1):15-22.
  • 17. Sahin F, Yilmaz F, Ozmaden A, Kotevoglu N, Sahin T, Kuran B. Reliability and validity of the Turkish version of the Berg Balance Scale. Journal of geriatric physical therapy. 2008;31(1):32-7.
  • 18. King LA, Priest KC, Salarian A, Pierce D, Horak FB. Comparing the Mini-BESTest with the Berg Balance Scale to evaluate balance disorders in Parkinson’s Disease. Parkinson’s Disease. 2012;2012:375419. doi: 10.1155/2012/375419.
  • 19. Verheyden G, Willems A-M, Ooms L, Nieuwboer A. Validity of the trunk impairment scale as a measure of trunk performance in people with Parkinson’s Disease. Archives of physical medicine and rehabilitation. 2007;88(10):1304-8.
  • 20. Villafañe JH, Valdes K, Buraschi R, Martinelli M, Bissolotti L, Negrini S. Reliability of the handgrip strength test in elderly subjects with Parkinson disease. Hand. 2016;11(1):54-8.
  • 21. Proud EL, Miller KJ, Bilney B, Morris ME, McGinley JL. Construct validity of the 9-Hole Peg Test and Purdue Pegboard Test in people with mild to moderately severe Parkinson’s Disease. Physiotherapy. 2020;107:202-8.
  • 22. Van Schooten KS, Duran L, Visschedijk M, Pijnappels M, Lord SR, Richardson J, et al. Catch the ruler: concurrent validity and test–retest reliability of the ReacStick measures of reaction time and inhibitory executive function in older people. Aging Clinical and Experimental Research. 2019;31:1147-54.
  • 23. Hubble RP, Silburn PA, Naughton GA, Cole MH. Trunk exercises improve balance in Parkinson disease: a phase II randomized controlled trial. Journal of Neurologic Physical Therapy. 2019;43(2):96-105.
  • 24. McConville JT, Clauser CE, Churchill TD, Cuzzi J, Kaleps I. Anthropometric relationships of body and body segment moments of inertia. Ohio: Anthropology Research Project Inc Yellow Sprıngs; 1980
  • 25. Van der Burg J, Van Wegen E, Rietberg M, Kwakkel G, Van Dieën J. Postural control of the trunk during unstable sitting in Parkinson’s Disease. Parkinsonism & related disorders. 2006;12(8):492-8.
  • 26. Cole MH, Silburn PA, Wood JM, Worringham CJ, Kerr GK. Falls in Parkinson’s Disease: kinematic evidence for impaired head and trunk control. Movement Disorders. 2010;25(14):2369-78.
  • 27. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. Journal of neurophysiology. 1986;55(6):1369-81.
  • 28. Palmer TG, Howell DM, Mattacola CG, Viele K. Self-perceptions of proximal stability as measured by the functional movement screen. The Journal of Strength & Conditioning Research. 2013;27(8):2157-64.
  • 29. Xue Q-L, Walston JD, Fried LP, Beamer BA. Prediction of risk of falling, physical disability, and frailty by rate of decline in grip strength: the women's health and aging study. Archives of Internal Medicine. 2011;171(12):1119-21.
  • 30. Růžička E, Krupička R, Zárubová K, Rusz J, Jech R, Szabó Z. Tests of manual dexterity and speed in Parkinson’s Disease: Not all measure the same. Parkinsonism & related disorders. 2016;28:118-23.
  • 31. Richardson JK, Eckner JT, Allet L, Kim H, Ashton-Miller J. Complex and simple clinical reaction times are associated with gait, balance, and major fall injury in older subjects with diabetic peripheral neuropathy. American journal of physical medicine & rehabilitation. 2017;96(1):8.
  • 32. Bočková M, Lamoš M, Klimeš P, Jurák P, Halámek J, Goldemundová S, et al. Suboptimal response to STN-DBS in Parkinson’s Disease can be identified via reaction times in a motor cognitive paradigm. Journal of Neural Transmission. 2020;127:1579-88.
  • 33. Szabo DA, Neagu N, Teodorescu S, Panait CM, Sopa IS. Study on the influence of proprioceptive control versus visual control on reaction speed, hand coordination, and lower limb balance in young students 14–15 years old. International Journal of Environmental Research and Public Health. 2021;18(19):10356.
  • 34. Ertavukcu A, Sanioğlu A, Şahin İH, Ertavukcu S. Reaksiyon Zamanı ve Reaksiyon Zamanının Ölçülmesi. Ulusal Kinesyoloji Dergisi. 2021;2(2):55-66.

COMPARISON OF TRUNK CONTROL, MANUAL DEXTERITY, AND REACTION TIME ACCORDING TO DIFFERENT STATUS OF BALANCE IN PEOPLE WITH PARKINSON DISEASE

Year 2023, , 380 - 387, 23.09.2023
https://doi.org/10.17343/sdutfd.1295139

Abstract

Objective
This study aims to compare trunk control, manual dexterity,
and reaction time according to different balance
states in people with Parkinson's Disease (PwPD).
Material and Method
A total of 25 PwPD, 6 of whom were women, were
included in the study. Individuals were divided into the
Moderate-risk group (n=11) and the Low-risk group
(n=14) according to the Berg Balance Scale (BBS)
cut-off scores. To evaluate trunk control and functions,
static and dynamic sitting balance were evaluated
with the Trunk Impairment Scale (TIS), which
consists of trunk coordination sub-parameters. Hand
grip strength was measured with the Jamar hand dynamometer,
manual dexterity was measured bilaterally
with the Purdue Pegboard Test, and hand reaction
time was measured bilaterally with the the Ruler Drop
Test.
Results
When the groups were compared for trunk control,
there was a significant difference in the dynamic sitting
subparameter and the total score of the trunk impairment
scale in favor of the low-risk group (p=0.030,
p=0.005). However, there was no difference between
the groups in static sitting and coordination sub-parameters
(p=0.181, p=0.558). There was no difference
between the groups in the grip strength, dexterity, and
reaction time of both hands (p>0.05).
Conclusion
While the dynamic sitting balance and trunk impairment
of the moderate-risk balance group was worse
than the low-risk group, manual dexterity and reaction
time were similar. Further studies are needed to
examine manual dexterity for trunk and distal mobility,
which play a key role in proximal stabilization and balance
in PwPD.

Supporting Institution

-

Project Number

-

References

  • 1. Riya M, Palkar A, Kumar A. Effect of Motor Imagery on Hand Function in Parkinson’s Disease: A Pilot Randomised Control Trial. Indian Journal of Physiotherapy & Occupational Therapy. 2022;16(1):86-94.
  • 2. Paz TdSR, de Britto VLS, Yamaguchi B, Israel VL, Swarowsky A, Correa CL. Hand function as predictor of motor symptom severity in individuals with Parkinson’s Disease. Gerontology. 2021;67(2):160-7.
  • 3. Kandaswamy D, MuthuKumar M, Alexander M, Prabhu K, Krothapalli SB. Quantitative assessment of hand dysfunction in patients with early Parkinson’s Disease and focal hand dystonia. Journal of movement disorders. 2018;11(1):35.
  • 4. Fellows SJ, Noth J. Grip force abnormalities in de novo Parkinson’s Disease. Movement disorders. 2004;19(5):560-5.
  • 5. Steinbart E, Learning J. Parkinson’s disease: Challenges, progress and hope. Lakeway, Texas: National Center of Continuing Education; 2013.
  • 6. Pohar SL, Jones CA. The burden of Parkinson disease (PD) and concomitant comorbidities. Archives of gerontology and geriatrics. 2009;49(2):317-21.
  • 7. Canning CG, Allen NE, Nackaerts E, Paul SS, Nieuwboer A, Gilat M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nature Reviews Neurology. 2020;16(8):409-25.
  • 8. Gera G, Freeman D, Blackinton MT, Horak F, King L. Identification of balance deficits in people with Parkinson disease; is the sensory organization test enough? International journal of physical medicine & rehabilitation. 2016 Feb;4(1):322. doi: 10.4172/2329-9096.1000322.
  • 9. Kalkan AC, Kahraman T, Ugut BO, Colakoglu BD, Genc A. A comparison of the relationship between manual dexterity and postural control in young and older individuals with Parkinson’s Disease. Journal of Clinical Neuroscience. 2020;75:89-93.
  • 10. Rosenblum S, Josman N. The relationship between postural control and fine manual dexterity. Physical & occupational therapy in pediatrics. 2003;23(4):47-60.
  • 11. Evrim G, Dönmez B, Çakmur R, Balci B. Erken Evre Parkinson Hastalarında Pilates ve Elastik Bantlama Uygulamalarının El Fonksiyonları, Postüral Kontrol Ve Gövde Kontrolü Üzerine Etkisi-Randomize Kontrollü Çalışma. Balıkesir Sağlık Bilimleri Dergisi. 2020;9(1):29-36.
  • 12. Yang S-H, Chung E-J, Lee J, Lee S-H, Lee B-H. The effect of trunk stability training based on visual feedback on trunk stability, balance, and upper limb function in stroke patients: A randomized control trial. Healthcare. 2021;9(5):532. doi: 10.3390/ healthcare9050532.
  • 13. Korkmaz NC, Akman TC, Oren GK, Bir LS. Trunk control: The essence for upper limb functionality in patients with multiple sclerosis. Multiple sclerosis and related disorders. 2018;24:101-6.
  • 14. Fatih S, Karaali HK, Ilgin D, Yüksel E, Özcan Ö, Arslan T. Relationship between postural control and hand function in the subjects aged 65 years and over. Fizyoterapi Rehabilitasyon. 2018;29(1):33-8.
  • 15. Huang J-R, Zhang F, Wen F-F, Chen F-J, Zhu T-T. Effect of biofeedback combined with task-oriented training on hand function, Gesell scale score and balance ability in children with spastic cerebral palsy. Journal of Sichuan University Medical Science Edition. 2020;51(3):428-33.
  • 16. Mahieux F, Michelet D, Manifacier M-J, Boller F, Fermanian J, Guillard A. Mini-Mental Parkinson: first validation study of a new bedside test constructed for Parkinson’s Disease. Behavioural neurology. 1995;8(1):15-22.
  • 17. Sahin F, Yilmaz F, Ozmaden A, Kotevoglu N, Sahin T, Kuran B. Reliability and validity of the Turkish version of the Berg Balance Scale. Journal of geriatric physical therapy. 2008;31(1):32-7.
  • 18. King LA, Priest KC, Salarian A, Pierce D, Horak FB. Comparing the Mini-BESTest with the Berg Balance Scale to evaluate balance disorders in Parkinson’s Disease. Parkinson’s Disease. 2012;2012:375419. doi: 10.1155/2012/375419.
  • 19. Verheyden G, Willems A-M, Ooms L, Nieuwboer A. Validity of the trunk impairment scale as a measure of trunk performance in people with Parkinson’s Disease. Archives of physical medicine and rehabilitation. 2007;88(10):1304-8.
  • 20. Villafañe JH, Valdes K, Buraschi R, Martinelli M, Bissolotti L, Negrini S. Reliability of the handgrip strength test in elderly subjects with Parkinson disease. Hand. 2016;11(1):54-8.
  • 21. Proud EL, Miller KJ, Bilney B, Morris ME, McGinley JL. Construct validity of the 9-Hole Peg Test and Purdue Pegboard Test in people with mild to moderately severe Parkinson’s Disease. Physiotherapy. 2020;107:202-8.
  • 22. Van Schooten KS, Duran L, Visschedijk M, Pijnappels M, Lord SR, Richardson J, et al. Catch the ruler: concurrent validity and test–retest reliability of the ReacStick measures of reaction time and inhibitory executive function in older people. Aging Clinical and Experimental Research. 2019;31:1147-54.
  • 23. Hubble RP, Silburn PA, Naughton GA, Cole MH. Trunk exercises improve balance in Parkinson disease: a phase II randomized controlled trial. Journal of Neurologic Physical Therapy. 2019;43(2):96-105.
  • 24. McConville JT, Clauser CE, Churchill TD, Cuzzi J, Kaleps I. Anthropometric relationships of body and body segment moments of inertia. Ohio: Anthropology Research Project Inc Yellow Sprıngs; 1980
  • 25. Van der Burg J, Van Wegen E, Rietberg M, Kwakkel G, Van Dieën J. Postural control of the trunk during unstable sitting in Parkinson’s Disease. Parkinsonism & related disorders. 2006;12(8):492-8.
  • 26. Cole MH, Silburn PA, Wood JM, Worringham CJ, Kerr GK. Falls in Parkinson’s Disease: kinematic evidence for impaired head and trunk control. Movement Disorders. 2010;25(14):2369-78.
  • 27. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. Journal of neurophysiology. 1986;55(6):1369-81.
  • 28. Palmer TG, Howell DM, Mattacola CG, Viele K. Self-perceptions of proximal stability as measured by the functional movement screen. The Journal of Strength & Conditioning Research. 2013;27(8):2157-64.
  • 29. Xue Q-L, Walston JD, Fried LP, Beamer BA. Prediction of risk of falling, physical disability, and frailty by rate of decline in grip strength: the women's health and aging study. Archives of Internal Medicine. 2011;171(12):1119-21.
  • 30. Růžička E, Krupička R, Zárubová K, Rusz J, Jech R, Szabó Z. Tests of manual dexterity and speed in Parkinson’s Disease: Not all measure the same. Parkinsonism & related disorders. 2016;28:118-23.
  • 31. Richardson JK, Eckner JT, Allet L, Kim H, Ashton-Miller J. Complex and simple clinical reaction times are associated with gait, balance, and major fall injury in older subjects with diabetic peripheral neuropathy. American journal of physical medicine & rehabilitation. 2017;96(1):8.
  • 32. Bočková M, Lamoš M, Klimeš P, Jurák P, Halámek J, Goldemundová S, et al. Suboptimal response to STN-DBS in Parkinson’s Disease can be identified via reaction times in a motor cognitive paradigm. Journal of Neural Transmission. 2020;127:1579-88.
  • 33. Szabo DA, Neagu N, Teodorescu S, Panait CM, Sopa IS. Study on the influence of proprioceptive control versus visual control on reaction speed, hand coordination, and lower limb balance in young students 14–15 years old. International Journal of Environmental Research and Public Health. 2021;18(19):10356.
  • 34. Ertavukcu A, Sanioğlu A, Şahin İH, Ertavukcu S. Reaksiyon Zamanı ve Reaksiyon Zamanının Ölçülmesi. Ulusal Kinesyoloji Dergisi. 2021;2(2):55-66.
There are 34 citations in total.

Details

Primary Language English
Subjects Clinical Sciences, Health Care Administration
Journal Section Research Articles
Authors

Hatice Yakut 0000-0002-0033-0144

Zülal Bekar 0000-0002-2076-1152

Tuba Maden 0000-0001-8713-0825

Süleyman Kutluhan 0000-0001-9749-2467

Project Number -
Publication Date September 23, 2023
Submission Date May 11, 2023
Acceptance Date August 11, 2023
Published in Issue Year 2023

Cite

Vancouver Yakut H, Bekar Z, Maden T, Kutluhan S. COMPARISON OF TRUNK CONTROL, MANUAL DEXTERITY, AND REACTION TIME ACCORDING TO DIFFERENT STATUS OF BALANCE IN PEOPLE WITH PARKINSON DISEASE. Med J SDU. 2023;30(3):380-7.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.