Review
BibTex RIS Cite

Oksidatif stres durumunda antioksidan enzimlerin rolü - Süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GPX)

Year 2019, , 362 - 369, 01.09.2019
https://doi.org/10.17343/sdutfd.566969

Abstract

Vücut enzimatik ve enzimatik olmayan karmaşık bir antioksidan savunma
sistemine sahiptir. Antioksidan mekanizmalar vücut dokuları için zararlı
etkilere sahip olan serbest radikallere karşı savunma sistemi geliştirirler.
Süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GPX) hücrede
serbest radikallere karşı temel savunma hattını oluştururlar. Serbest
radikaller özellikle mitokondriyal enerji üretim yoluyla sürekli olarak
üretilir.  



Serbest radikallerin hücrede birikmesi oksidatif strese ve hücresel
hasara neden olur. Hücre reaktif oksijen türlerinde artışın nörodejeneratif,
kardiyovasküler, diyebet ve böbrek hastalıkları gibi bir çok hastalıkların
patogenezinde rol oynadığı ifade edilmektedir. 
SOD, CAT ve GPx’in hücresel hasarı önlemedeki rolü sürekli olarak
araştırılmaktadır. 



Bu derleme makalesi, SOD, CAT ve GPX antioksidan enzimlerinin oksidatif
stresi önlemedeki rolünü açıklamak için yazılmıştır. 

References

  • 1. Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. 1985; B311: 617–31
  • 2. Halliwell B. Biochemistry of oxidative stress. Biochemical Society Transactions; 35, part 5.
  • 3. Lopez-Alarcona C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal. Chim. Acta; 2013; 763: 1e10.
  • 4. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry 2015; 97: 55e74
  • 5. Percival, M., Antioxidants. Clinical Nutrition Insights 1998; 10:1-4
  • 6. Poljsak B, Jamnik P, Raspor P, Pesti M. Oxidation-antioxidation-reduction processes in the cell: impacts of environmental pollution, in: N. Jerome (Ed.), Encyclopedia of Environmental Health, Elsevier, 2011, pp. 300e306.
  • 7. Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants, Oxid. Med. Cell. Longev 2013;2013: Article ID 956792, 11 pages, http://dx.doi.org/10.1155/2013/956792.
  • 8. Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int J Pharm Sci Res 2010; 3(1): 91-100.
  • 9. Gutteridge JMC. Biological origin of free radicals, and mechanisms of antioxidant protection, Chem. Biol. Interact. 1994; 91: 133-140.
  • 10. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification, Toxicol. Pathol. 2002; 30(6): 620- 650.
  • 11. Miao L, Clair DKS. Regulation of superoxide dismutase genes: implications in disease, Free Radic. Bio. Med. 2009;47: 344-356.
  • 12. Young IS, Woodside J V. Antioxidants in health and disease. J Clin Pathol. 2001; 54: 176-186.
  • 13. Al-Omar MA, Beedham C, Alsarra IA. Pathological roles of reactive oxygen species and their defence mechanisms. Saudi Pharm J. 2004;12: 1-18.
  • 14. Valko M, Izakovic M, Mazur M, Christopher J, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004; 266(1-2): 37-56.
  • 15. Ayala A, Munoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity 2014; 2014: Article ID 360438, 31 pages
  • 16. Frankel EN, Neff WE. Formation of malonaldehyde from lipid oxidation products. Biochim Biophys Acta 1983;754(3): 264-270.
  • 17. Esterbauer H, Schaur RJ, Zollner H. Chemistry and Biochemistry of 4-hydroxynonenal,malonaldehyde and related aldehydes. Free Radical Biology and Medicine 1991;11(1): 81–128
  • 18. Wang X, Lei XG, Wang J. Malondialdehyde regulates glucose-stimulated insulin secretion in murine islets via TCF7L2-dependent Wnt signaling pathway. Molecular and Cellular Endocrinology 2014; 382(1): 8–16.
  • 19. Garc´ıa-Ruiz I, de la Torre P, D´ıaz T, Esteban E, Fernandez I, Munoz T, et al. “Sp1 and Sp3 transcription factors mediate malondialdehyde-induced collagen alpha 1(I) gene expression in cultured hepatic stellate cells,” The Journal of Biological Chemistry 2002; 277( 34): 30551–30558
  • 20. Blair IA. DNA adducts with lipid peroxidation products,” Journal of Biological Chemistry 2008;283(23): 15545–15549.
  • 21. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism & Cardiovascular Diseases 2005; 15: 316-328
  • 22. Sanyal J, Bandyopadhyay SK., Banerjee TK, Mukherjee SC, Chakraborty DP, Ray BC, et al. Plasma levels of lipid peroxides in patients with Parkinson’s disease,”European Review forMedical and Pharmacological Sciences 2009;13( 2): 129–132.
  • 23. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 2007; 39: 44–84
  • 24. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 2018;54: 287–293.
  • 25. Aslankoc R, Gumral N, Saygın M, Senol M, Ascı H, Cankara FN, Comlekci S. The impact of electric fields on testis physiopathology, sperm parameters and DNA integrity—The role of resveratrol. Andrologia 2018;50:e12971.
  • 26. Postaci I, Coskun O, Senol N, Aslankoc R, Comlekci S. The physiopathological effects of quercetin on oxidative stress in radiation of 4.5 g mobile phone exposed liver tissue of rat. Bratisl Lek Listy. 2018;119(8):481-489.
  • 27. Lotito SB, Fraga CG. (+)-Catechin prevents human plasma oxidation. Free Radic Biol Med. 1998;24: 435-441
  • 28. Kojo S. Vitamin C: Basic metabolism and its function as an index of oxidative stress. Curr. Med. Chem. 2004; 11: 1041–1064.
  • 29. Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005; 126, 365–379.
  • 30. Sharoni Y, Danilenko M, Dubi N, Ben-Dor A, Levy J. Carotenoids and transcription. Arch. Biochem. Biophys., 2004;430: 89–96.
  • 31. Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress.Curr. Med. Chem. 2004; 11: 1135–1146.
  • 32. Topsakal S, Ozmen O, Aslankoc R, Aydemir DH. Pancreatic damage induced by cigarette smoke: the specific pathological effects of cigarette smoke in the rat model. Toxicol Res (Camb). 2016;5(3): 938-945.
  • 33. Saygin M, Ozmen O, Erol O, Ellidağ HY, Ilhan I, Aslankoc R. The impact of electromagnetic radiation (2.45 GHz, Wi-Fi) on the female reproductive system: The role of vitamin C. Toxicol Ind Health. 2018;34(9): 620-630.
  • 34. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology & Medicine 2002; 33(3): 337–349.
  • 35. Takada Y, Hachiya M, Park SH, Osawa Y, Ozawa T, Akashi M. Role of Reactive Oxygen Species in Cells Overexpressing Manganese Superoxide Dismutase: Mechanism for Induction of Radioresistance. Molecular Cancer Research 2002;1: 137–146.
  • 36. Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radical Biology & Medicine 2003; 35(3): 236–256.
  • 37. Landmesser U, Merten R, Spiekermann S, Buttner K., Drexler H, Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation; 2000;101:2264– 2270.
  • 38. Fukai T, Siegfried MR, Ushio-Fukai M, Griendling KK, Harrison DG. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ. Res.1999; 85: 23–28.
  • 39. Kimura F, Hasegawa G, Obayashi H, Adachi T, Hara H, Ohta M, et al. Serum Extracellular Superoxide Dismutase in Patients With Type 2 Diabetes. Diabetes Care 2003;26:1246–1250.
  • 40. Schneider MP, Sullivan JC, Wach PF , Boesen RI, Yamamoto T, Fukai T, Harrison DG, Pollock DM, Pollock JS. Protective role of extracellular superoxide dismutase in renal ischemia/reperfusion injury. Kidney International 2010; 78: 374–381
  • 41. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991;266:22028–22034.
  • 42. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61: 192–208.
  • 43. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82: 47–95.
  • 44. Zámocky´ M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol. 1999;72: 19–66.
  • 45. Khan MA, Tania M, Zhang DZ, Chen HC. Antioxidant enzymes and cancer. Chinese J Cancer Res. 2010;22: 87–92.
  • 46. Góth , Rass P, Páy A. Catalase enzyme mutations and their association with diseases. Mol Diagn. 2004;8: 141–149.
  • 47. Cnubben NHP, Rietjens IMCM, Wortelboer H, Van Zanden J, Van Bladeren PJ. The interplay of glutathione-related processes in antioxidant defense. Environmental Toxicology and Pharmacology 2001;10:141-152.
  • 48. Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest. 2009;119(7):2074-2085.
  • 49. Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ. Glutathione Peroxidase 1 Activity and Cardiovascular Events in Patients with Coronary Artery Disease. N Engl J Med 2003; 349:1605-1613
Year 2019, , 362 - 369, 01.09.2019
https://doi.org/10.17343/sdutfd.566969

Abstract

References

  • 1. Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. 1985; B311: 617–31
  • 2. Halliwell B. Biochemistry of oxidative stress. Biochemical Society Transactions; 35, part 5.
  • 3. Lopez-Alarcona C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal. Chim. Acta; 2013; 763: 1e10.
  • 4. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry 2015; 97: 55e74
  • 5. Percival, M., Antioxidants. Clinical Nutrition Insights 1998; 10:1-4
  • 6. Poljsak B, Jamnik P, Raspor P, Pesti M. Oxidation-antioxidation-reduction processes in the cell: impacts of environmental pollution, in: N. Jerome (Ed.), Encyclopedia of Environmental Health, Elsevier, 2011, pp. 300e306.
  • 7. Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants, Oxid. Med. Cell. Longev 2013;2013: Article ID 956792, 11 pages, http://dx.doi.org/10.1155/2013/956792.
  • 8. Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int J Pharm Sci Res 2010; 3(1): 91-100.
  • 9. Gutteridge JMC. Biological origin of free radicals, and mechanisms of antioxidant protection, Chem. Biol. Interact. 1994; 91: 133-140.
  • 10. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification, Toxicol. Pathol. 2002; 30(6): 620- 650.
  • 11. Miao L, Clair DKS. Regulation of superoxide dismutase genes: implications in disease, Free Radic. Bio. Med. 2009;47: 344-356.
  • 12. Young IS, Woodside J V. Antioxidants in health and disease. J Clin Pathol. 2001; 54: 176-186.
  • 13. Al-Omar MA, Beedham C, Alsarra IA. Pathological roles of reactive oxygen species and their defence mechanisms. Saudi Pharm J. 2004;12: 1-18.
  • 14. Valko M, Izakovic M, Mazur M, Christopher J, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004; 266(1-2): 37-56.
  • 15. Ayala A, Munoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity 2014; 2014: Article ID 360438, 31 pages
  • 16. Frankel EN, Neff WE. Formation of malonaldehyde from lipid oxidation products. Biochim Biophys Acta 1983;754(3): 264-270.
  • 17. Esterbauer H, Schaur RJ, Zollner H. Chemistry and Biochemistry of 4-hydroxynonenal,malonaldehyde and related aldehydes. Free Radical Biology and Medicine 1991;11(1): 81–128
  • 18. Wang X, Lei XG, Wang J. Malondialdehyde regulates glucose-stimulated insulin secretion in murine islets via TCF7L2-dependent Wnt signaling pathway. Molecular and Cellular Endocrinology 2014; 382(1): 8–16.
  • 19. Garc´ıa-Ruiz I, de la Torre P, D´ıaz T, Esteban E, Fernandez I, Munoz T, et al. “Sp1 and Sp3 transcription factors mediate malondialdehyde-induced collagen alpha 1(I) gene expression in cultured hepatic stellate cells,” The Journal of Biological Chemistry 2002; 277( 34): 30551–30558
  • 20. Blair IA. DNA adducts with lipid peroxidation products,” Journal of Biological Chemistry 2008;283(23): 15545–15549.
  • 21. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism & Cardiovascular Diseases 2005; 15: 316-328
  • 22. Sanyal J, Bandyopadhyay SK., Banerjee TK, Mukherjee SC, Chakraborty DP, Ray BC, et al. Plasma levels of lipid peroxides in patients with Parkinson’s disease,”European Review forMedical and Pharmacological Sciences 2009;13( 2): 129–132.
  • 23. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 2007; 39: 44–84
  • 24. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 2018;54: 287–293.
  • 25. Aslankoc R, Gumral N, Saygın M, Senol M, Ascı H, Cankara FN, Comlekci S. The impact of electric fields on testis physiopathology, sperm parameters and DNA integrity—The role of resveratrol. Andrologia 2018;50:e12971.
  • 26. Postaci I, Coskun O, Senol N, Aslankoc R, Comlekci S. The physiopathological effects of quercetin on oxidative stress in radiation of 4.5 g mobile phone exposed liver tissue of rat. Bratisl Lek Listy. 2018;119(8):481-489.
  • 27. Lotito SB, Fraga CG. (+)-Catechin prevents human plasma oxidation. Free Radic Biol Med. 1998;24: 435-441
  • 28. Kojo S. Vitamin C: Basic metabolism and its function as an index of oxidative stress. Curr. Med. Chem. 2004; 11: 1041–1064.
  • 29. Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005; 126, 365–379.
  • 30. Sharoni Y, Danilenko M, Dubi N, Ben-Dor A, Levy J. Carotenoids and transcription. Arch. Biochem. Biophys., 2004;430: 89–96.
  • 31. Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress.Curr. Med. Chem. 2004; 11: 1135–1146.
  • 32. Topsakal S, Ozmen O, Aslankoc R, Aydemir DH. Pancreatic damage induced by cigarette smoke: the specific pathological effects of cigarette smoke in the rat model. Toxicol Res (Camb). 2016;5(3): 938-945.
  • 33. Saygin M, Ozmen O, Erol O, Ellidağ HY, Ilhan I, Aslankoc R. The impact of electromagnetic radiation (2.45 GHz, Wi-Fi) on the female reproductive system: The role of vitamin C. Toxicol Ind Health. 2018;34(9): 620-630.
  • 34. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology & Medicine 2002; 33(3): 337–349.
  • 35. Takada Y, Hachiya M, Park SH, Osawa Y, Ozawa T, Akashi M. Role of Reactive Oxygen Species in Cells Overexpressing Manganese Superoxide Dismutase: Mechanism for Induction of Radioresistance. Molecular Cancer Research 2002;1: 137–146.
  • 36. Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radical Biology & Medicine 2003; 35(3): 236–256.
  • 37. Landmesser U, Merten R, Spiekermann S, Buttner K., Drexler H, Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation; 2000;101:2264– 2270.
  • 38. Fukai T, Siegfried MR, Ushio-Fukai M, Griendling KK, Harrison DG. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ. Res.1999; 85: 23–28.
  • 39. Kimura F, Hasegawa G, Obayashi H, Adachi T, Hara H, Ohta M, et al. Serum Extracellular Superoxide Dismutase in Patients With Type 2 Diabetes. Diabetes Care 2003;26:1246–1250.
  • 40. Schneider MP, Sullivan JC, Wach PF , Boesen RI, Yamamoto T, Fukai T, Harrison DG, Pollock DM, Pollock JS. Protective role of extracellular superoxide dismutase in renal ischemia/reperfusion injury. Kidney International 2010; 78: 374–381
  • 41. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991;266:22028–22034.
  • 42. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61: 192–208.
  • 43. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82: 47–95.
  • 44. Zámocky´ M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol. 1999;72: 19–66.
  • 45. Khan MA, Tania M, Zhang DZ, Chen HC. Antioxidant enzymes and cancer. Chinese J Cancer Res. 2010;22: 87–92.
  • 46. Góth , Rass P, Páy A. Catalase enzyme mutations and their association with diseases. Mol Diagn. 2004;8: 141–149.
  • 47. Cnubben NHP, Rietjens IMCM, Wortelboer H, Van Zanden J, Van Bladeren PJ. The interplay of glutathione-related processes in antioxidant defense. Environmental Toxicology and Pharmacology 2001;10:141-152.
  • 48. Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest. 2009;119(7):2074-2085.
  • 49. Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ. Glutathione Peroxidase 1 Activity and Cardiovascular Events in Patients with Coronary Artery Disease. N Engl J Med 2003; 349:1605-1613
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Reviews
Authors

Rahime Aslankoç

Deniz Demirci This is me

Ümmahan İnan This is me

Mahmut Yıldız This is me

Ahmet Öztürk This is me

Mevlüt Çetin This is me

Ecem Şirin Savran This is me

Burak Yılmaz This is me

Publication Date September 1, 2019
Submission Date May 17, 2019
Acceptance Date June 24, 2019
Published in Issue Year 2019

Cite

Vancouver Aslankoç R, Demirci D, İnan Ü, Yıldız M, Öztürk A, Çetin M, Savran EŞ, Yılmaz B. Oksidatif stres durumunda antioksidan enzimlerin rolü - Süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GPX). Med J SDU. 2019;26(3):362-9.

Cited By



















                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.