Research Article
BibTex RIS Cite

MICROSURGICAL ANATOMY OF THE CONNECTIONS OF CAUDATE NUCLEUS AND PSYCHOSURGICAL CONSIDERATIONS : A UNIQUE CADAVER STUDY

Year 2020, , 1 - 7, 01.03.2020
https://doi.org/10.17343/sdutfd.604323

Abstract

Aim:
Caudate
Nucleus has been discussed as a target for new treatments of neurologic and
psychiatric diseases but the connectivity remains unclear for both microsurgical
procedures and stereotactic interventions despite the basic neuroanatomical
knowledge. We aim to reveal the anatomic relationship of the caudate nucleus
using fiber dissection technique.

Material
and Methods:
Four brain specimens (8 Hemispheres)
were frozen for 15
days at -16 °C according to Klingler’s Technique
. The
freezing process facilitates the dissection of the fiber tracts. After
completion of the freezing process, the dissections were stepwise performed
from lateral to medial, under x6 to x40 magnification using a surgical
microscope, two and three-dimensional anatomic pictures were obtained.

Results:
Stepwise
microsurgical fiber dissection of the Caudate Nucleus and adjacent areas were
dissected. The cortical areas communicating with and overlying the Caudate
Nucleus are reviewed. Frontocaudate Connection Fibers and Temporocaudate Fibers
were intense and the microsurgical anatomy of the area were revealed.







Conclusion:
Psychosurgery
has been used primarily in the treatment of depression when the medical
treatments were not adequate. Deep Brain Stimulation of Nucleus Caudatus is not
standard treatment procedure in the clinical practice. It may be considered that
 different parts of the Caudate Nucleus
and connection fibers associated with Caudate Nucleus can be used as a target
for Deep Brain Stimulation which could be an alternative treatment for Parkinson's
Disease, Obsessive Compulsive Disorder and Major Depression.

Supporting Institution

University of Florida Mc Knight Brain Institute Department of Neurosurgery , Microneurosurgical Anatomy Laboratory

Thanks

We are gratefull for Prof.Dr. Albert Rhoton (RIP) for his world class mentoship.

References

  • 1. Ribas EC, Yagmurlu K, de Oliveira E, Ribas GC, Rhoton A, Jr. Microsurgical anatomy of the central core of the brain. J Neurosurg. 2017:1-18.
  • 2. Baydin S, Yagmurlu K, Tanriover N, Gungor A, Rhoton AL, Jr. Microsurgical and Fiber Tract Anatomy of the Nucleus Accumbens. Oper Neurosurg (Hagerstown). 2016;12(3):269-88.
  • 3. Kier EL, Staib LH, Davis LM, Bronen RA. Anatomic dissection tractography: a new method for precise MR localization of white matter tracts. AJNR Am J Neuroradiol. 2004;25(5):670-6.
  • 4. Burks JD, Conner AK, Bonney PA, Glenn CA, Baker CM, Boettcher LB, et al. Anatomy and white matter connections of the orbitofrontal gyrus. J Neurosurg. 2018;128(6):1865-72.
  • 5. Choi CY, Han SR, Yee GT, Lee CH. Central core of the cerebrum. J Neurosurg. 2011;114(2):463-9.
  • 6. Yagmurlu K, Vlasak AL, Rhoton AL, Jr. Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery. 2015;11 Suppl 2:274-305; discussion
  • 7. Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008;86(3):141-55.
  • 8. Ding L. Distinct dynamics of ramping activity in the frontal cortex and caudate nucleus in monkeys. J Neurophysiol. 2015;114(3):1850-61.
  • 9. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18(1):7-21.
  • 10. Schiff ND, Fins JJ. Deep brain stimulation and cognition: moving from animal to patient. Curr Opin Neurol. 2007;20(6):638-42.
  • 11. J. K. Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 1935;36:247–56.
  • 12. Ribas EC, Yagmurlu K, de Oliveira E, Ribas GC, Rhoton A, Jr. Microsurgical anatomy of the central core of the brain. J Neurosurg. 2018;129(3):752-69.
  • 13. Kim MJ, Hamilton JP, Gotlib IH. Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Res. 2008;164(2):114-22.
  • 14. Kotz SA, Anwander A, Axer H, Knosche TR. Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus. PLoS One. 2013;8(7):e70141.
  • 15. Yeterian EH, Pandya DN. Corticostriatal connections of extrastriate visual areas in rhesus monkeys. J Comp Neurol. 1995;352(3):436-57.
  • 16. Im I, Jun JP, Hwang S, Ko MH. Swallowing outcomes in patients with subcortical stroke associated with lesions of the caudate nucleus and insula. J Int Med Res. 2018;46(9):3552-62.
  • 17. Alarcon C, de Notaris M, Palma K, Soria G, Weiss A, Kassam A, et al. Anatomic study of the central core of the cerebrum correlating 7-T magnetic resonance imaging and fiber dissection with the aid of a neuronavigation system. Neurosurgery. 2014;10 Suppl 2:294-304; discussion
  • 18. Postle BR, D'Esposito M. Spatial working memory activity of the caudate nucleus is sensitive to frame of reference. Cogn Affect Behav Neurosci. 2003;3(2):133-44.
  • 19. Postle BR, D'Esposito M. Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. Brain Res Cogn Brain Res. 1999;8(2):107-15.
  • 20. White NM. Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behav Brain Res. 2009;199(1):3-23.
  • 21. Da Cunha C, Packard MG. Special issue on the role of the basal ganglia in learning and memory. Preface. Behav Brain Res. 2009;199(1):1-2.
  • 22. Foerde K, Shohamy D. The role of the basal ganglia in learning and memory: insight from Parkinson's disease. Neurobiol Learn Mem. 2011;96(4):624-36.
  • 23. Grahn JA, Parkinson JA, Owen AM. The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res. 2009;199(1):53-60.
  • 24. Elliott R, Newman JL, Longe OA, Deakin JF. Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci. 2003;23(1):303-7.
  • 25. Levitt JJ, McCarley RW, Dickey CC, Voglmaier MM, Niznikiewicz MA, Seidman LJ, et al. MRI study of caudate nucleus volume and its cognitive correlates in neuroleptic-naive patients with schizotypal personality disorder. Am J Psychiatry. 2002;159(7):1190-7.
  • 26. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004;27:1-28.
  • 27. Seger CA, Cincotta CM. The roles of the caudate nucleus in human classification learning. J Neurosci. 2005;25(11):2941-51.
  • 28. Chiu YC, Jiang J, Egner T. The Caudate Nucleus Mediates Learning of Stimulus-Control State Associations. J Neurosci. 2017;37(4):1028-38.
  • 29. Gronholm EO, Roll MC, Horne MA, Sundgren PC, Lindgren AG. Predominance of caudate nucleus lesions in acute ischaemic stroke patients with impairment in language and speech. Eur J Neurol. 2016;23(1):148-53.
  • 30. Villablanca JR. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res. 2004;13(3):179-208.
  • 31. Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmacher T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006;129(Pt 3):655-67.
  • 32. Aron A, Fisher H, Mashek DJ, Strong G, Li H, Brown LL. Reward, motivation, and emotion systems associated with early-stage intense romantic love. J Neurophysiol. 2005;94(1):327-37.
  • 33. Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS One. 2011;6(7):e21852.
  • 34. Crinion J, Turner R, Grogan A, Hanakawa T, Noppeney U, Devlin JT, et al. Language control in the bilingual brain. Science. 2006;312(5779):1537-40.
  • 35. Fernandez-Miranda JC, Rhoton AL, Jr., Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 Suppl 3):989-1026; discussion -8.
  • 36. Butters MA, Aizenstein HJ, Hayashi KM, Meltzer CC, Seaman J, Reynolds CF, 3rd, et al. Three-dimensional surface mapping of the caudate nucleus in late-life depression. Am J Geriatr Psychiatry. 2009;17(1):4-12.
  • 37. Hickie IB, Naismith SL, Ward PB, Scott EM, Mitchell PB, Schofield PR, et al. Serotonin transporter gene status predicts caudate nucleus but not amygdala or hippocampal volumes in older persons with major depression. J Affect Disord. 2007;98(1-2):137-42.
  • 38. Bartres-Faz D, Junque C, Serra-Grabulosa JM, Lopez-Alomar A, Moya A, Bargallo N, et al. Dopamine DRD2 Taq I polymorphism associates with caudate nucleus volume and cognitive performance in memory impaired subjects. Neuroreport. 2002;13(9):1121-5.
  • 39. Nakamura K, Hikosaka O. Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J Neurosci. 2006;26(20):5360-9.
  • 40. Krishna Karthik D, Khardenavis V, Kulkarni S, Deshpande A. Global aphasia in a case of bilateral frontal lobe infarcts involving both caudate nuclei. BMJ Case Rep. 2017;2017.
  • 41. Tang WK, Liang HJ, Chen YK, Chu WC, Abrigo J, Mok VC, et al. Poststroke fatigue is associated with caudate infarcts. J Neurol Sci. 2013;324(1-2):131-5.
  • 42. Pellizzaro Venti M, Paciaroni M, Caso V. Caudate infarcts and hemorrhages. Front Neurol Neurosci. 2012;30:137-40.
  • 43. Bierer J, Wolf A, Lee DH, Rotenberg BW, Duggal N. Bilateral caudate nucleus infarcts: A case report of a rare complication following endoscopic resection of a tuberculum sellae meningioma. Surg Neurol Int. 2017;8:235.
  • 44. Kumral E, Evyapan D, Balkir K. Acute caudate vascular lesions. Stroke. 1999;30(1):100-8.
  • 45. Degos JD, da Fonseca N, Gray F, Cesaro P. Severe frontal syndrome associated with infarcts of the left anterior cingulate gyrus and the head of the right caudate nucleus. A clinico-pathological case. Brain. 1993;116 ( Pt 6):1541-8.
  • 46. Mandelli ML, Savoiardo M, Minati L, Mariotti C, Aquino D, Erbetta A, et al. Decreased diffusivity in the caudate nucleus of presymptomatic huntington disease gene carriers: which explanation? AJNR Am J Neuroradiol. 2010;31(4):706-10.
  • 47. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol. 1996;39(3):385-9.
  • 48. Broussolle E, Dentresangle C, Landais P, Garcia-Larrea L, Pollak P, Croisile B, et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease. J Neurol Sci. 1999;166(2):141-51.
  • 49. Owen AM. Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. Neuroscientist. 2004;10(6):525-37.
  • 50. Arregui A, Perry EK, Rossor M, Tomlinson BE. Angiotensin converting enzyme in Alzheimer's disease increased activity in caudate nucleus and cortical areas. J Neurochem. 1982;38(5):1490-2.
  • 51. Barber R, McKeith I, Ballard C, O'Brien J. Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia. J Neurol Neurosurg Psychiatry. 2002;72(3):406-7.
  • 52. Robinson D, Wu H, Munne RA, Ashtari M, Alvir JM, Lerner G, et al. Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch Gen Psychiatry. 1995;52(5):393-8.
  • 53. Rigoard P, Buffenoir K, Jaafari N, Giot JP, Houeto JL, Mertens P, et al. The accumbofrontal fasciculus in the human brain: a microsurgical anatomical study. Neurosurgery. 2011;68(4):1102-11; discussion 11.
  • 54. Rosso IM, Olson EA, Britton JC, Stewart SE, Papadimitriou G, Killgore WD, et al. Brain white matter integrity and association with age at onset in pediatric obsessive-compulsive disorder. Biol Mood Anxiety Disord. 2014;4(1):13.
  • 55. Singh VK, Rivas WH. Prevalence of serum antibodies to caudate nucleus in autistic children. Neurosci Lett. 2004;355(1-2):53-6.
  • 56. Molina V, Lubeiro A, Blanco J, Blanco JA, Rodriguez M, Rodriguez-Campos A, et al. Parkinsonism is associated to fronto-caudate disconnectivity and cognition in schizophrenia. Psychiatry Res Neuroimaging. 2018;277:1-6.
  • 57. Hoptman MJ, Volavka J, Czobor P, Gerig G, Chakos M, Blocher J, et al. Aggression and quantitative MRI measures of caudate in patients with chronic schizophrenia or schizoaffective disorder. J Neuropsychiatry Clin Neurosci. 2006;18(4):509-15.
  • 58. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Applied neurophysiology. 1987;50(1-6):344-6.
  • 59. Gabriels L. Deep brain stimulation for psychiatric disorders. Psychiatr Danub. 2010;22 Suppl 1:S162.
  • 60. Nuttin BJ, Gabriels L, van Kuyck K, Cosyns P. Electrical stimulation of the anterior limbs of the internal capsules in patients with severe obsessive-compulsive disorder: anecdotal reports. Neurosurgery clinics of North America. 2003;14(2):267-74.
  • 61. Arya S, Filkowski MM, Nanda P, Sheth SA. Deep brain stimulation for obsessive-compulsive disorder. Bull Menninger Clin. 2019;83(1):84-96.
  • 62. Lucas-Jimenez O, Ojeda N, Pena J, Diez-Cirarda M, Cabrera-Zubizarreta A, Gomez-Esteban JC, et al. Altered functional connectivity in the default mode network is associated with cognitive impairment and brain anatomical changes in Parkinson's disease. Parkinsonism Relat Disord. 2016;33:58-64.
  • 63. Costentin G, Derrey S, Gerardin E, Cruypeninck Y, Pressat-Laffouilhere T, Anouar Y, et al. White matter tracts lesions and decline of verbal fluency after deep brain stimulation in Parkinson's disease. Hum Brain Mapp. 2019;40(9):2561-70.
  • 64. Synofzik M, Schlaepfer TE. Electrodes in the brain--ethical criteria for research and treatment with deep brain stimulation for neuropsychiatric disorders. Brain Stimul. 2011;4(1):7-16.
  • 65. Vergani F, Martino J, Morris C, Attems J, Ashkan K, Dell'Acqua F. Anatomic Connections of the Subgenual Cingulate Region. Neurosurgery. 2016;79(3):465-72.
  • 66. Schlapfer T, Volkmann J, Deuschl G. [Deep brain stimulation in neurology and psychiatry]. Nervenarzt. 2014;85(2):135-6.
  • 67. Fink GR. [Deep brain stimulation in neurology and psychiatry]. Fortschr Neurol Psychiatr. 2010;78(2):69.
  • 68. Ashkan K, Shotbolt P, David AS, Samuel M. Deep brain stimulation: a return journey from psychiatry to neurology. Postgrad Med J. 2013;89(1052):323-8.
  • 69. Elliott M, Momin S, Fiddes B, Farooqi F, Sohaib SA. Pacemaker and Defibrillator Implantation and Programming in Patients with Deep Brain Stimulation. Arrhythm Electrophysiol Rev. 2019;8(2):138-42.
  • 70. Casagrande SCB, Cury RG, Alho EJL, Fonoff ET. Deep brain stimulation in Tourette's syndrome: evidence to date. Neuropsychiatr Dis Treat. 2019;15:1061-75.
  • 71. Baylis F. "I Am Who I Am": On the Perceived Threats to Personal Identity from Deep Brain Stimulation. Neuroethics. 2013;6:513-26.
  • 72. Liu JK, Soliman H, Machado A, Deogaonkar M, Rezai AR. Intracranial hemorrhage after removal of deep brain stimulation electrodes. J Neurosurg. 2012;116(3):525-8.
  • 73. Pelzer E, Pauls AK, Binder E, Brunn A, Fink GR, Timmermann L. Deep brain stimulation in rapidly progressive Parkinson-dystonia syndrome due to mitochondrial disorder. Parkinsonism Relat Disord. 2012;18(5):672-4.
  • 74. Kraemer F. Me, Myself and My Brain Implant: Deep Brain Stimulation Raises Questions of Personal Authenticity and Alienation. Neuroethics. 2013;6:483-97.
  • 75. Schermer M. Health, Happiness and Human Enhancement-Dealing with Unexpected Effects of Deep Brain Stimulation. Neuroethics. 2013;6:435-45.
  • 76. Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomical review of the ventral capsule/ventral striatum and the nucleus accumbens to guide target selection for deep brain stimulation for obsessive-compulsive disorder. World Neurosurg. 2019 Feb 18. pii: S1878-8750(19)30372-9. doi: 10.1016/j.wneu.2019.01.254. [Epub ahead of print]
  • 77. Peisker CB, Schuller T, Peters J, Wagner BJ, Schilbach L, Muller UJ, et al. Nucleus Accumbens Deep Brain Stimulation in Patients with Substance Use Disorders and Delay Discounting. Brain Sci. 2018;8(2).
  • 78. Butters N, Rosvold HE. Effect of caudate and septal nuclei lesions on resistance to extinction and delayed-alternation. J Comp Physiol Psychol. 1968;65(3):397-403.
  • 79. Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Botzel K. Deep Brain Stimulation Programming 2.0: Future Perspectives for Target Identification and Adaptive Closed Loop Stimulation. Front Neurol. 2019;10:314.

KAUDAT NUKLEUS BAĞLANTI YOLLARI MİKROCERRAHİ ANATOMİSİ’NİN PSİKOŞİRÜRJİKAL ÖNEMİ: ÖZGÜN KADAVRA ARAŞTIRMA ÇALIŞMASI

Year 2020, , 1 - 7, 01.03.2020
https://doi.org/10.17343/sdutfd.604323

Abstract

Amaç: Kaudat
Nukleus bazı nörolojik ve psikiyatrik hastalıkların tedavisinde bir hedef
olabilir mi diye tartışılmaktadır. Mikrocerrahi girişimler ve stereotaksik
yaklaşımlar için Kaudat Nukleus bağlantılarının daha açık bir şekilde
tanımlanması gerekmektedir. Bu çalışmamızda  Kaudat Nucleus mikrocerrahi anatomisini ve
bağlantı yollarını  fiber diseksiyon
tekniği kullanarak ortaya koymayı ve bunun psikoşirürjikal önemini orrtaya
koymayı  amaçladık.

Gereç
ve Yöntem:
Dört adet formalinle fikse edilmiş insan
beyni (8 hemisfer) detaylı şekilde incelendi. Tüm örnekler -16 ° C 'de en az 15
gün donduruldu ve birkaç saat boyunca su altında çözülmeleri sağlandı. Zeiss
marka cerrahi  mikroskobu ile x6 ila x40
büyütme altında mikro ayıraçlar kullanılarak ak madde lif diseksiyonu
gerçekleştirildi. Sekiz beyin hemisferi, medial serebral yüzeyden başlayarak ve
kaudat çekirdeğin başı ve gövdesi ortaya çıkana kadar lateral olarak disseke
edildi. Diseksiyonların tüm aşamaları, Canon T5 Rebel dijital kamera ile
kaydedildi.

Bulgular:
Kaudat
nukleus etrafındaki tüm yapılar adım adım diseke edildi. Bu yapı ile iletişim halinde olan ve fiziksel olarak temas eden
tüm kortikal alanlar gözden geçirildi. Frontokaudat ve frontotemporal
bağlantıların mikrocerrahi anatomisi ayrıntılı ortaya konuldu.







Sonuç: Psikoşirürji,
medikal tedavilerin henüz gelişmediği dönemlerde, depresyon tedavisinde
öncelikli olarak kullanılmıştır. Medikal tedavinin geliştiği çağda
psikoşirürjinin duraklama dönemine girdiği, ancak günümüzde nöromodülasyon
teknolojisinin de gelişmesiyle birlikte, tekrar öneminin artacağı
görülmektedir. Derin beyin stimülasyonu uygulamasının Kaudat Nukleus için rutin
bir klinik uygulaması bulunmamaktadır. Kaudat Nucleus ve bağlantı yollarının
Derin Beyin Stimulasyonunun, parkinson hastalığı obsesif kompulsif bozukluk ve
major depresyon gibi hastalıklarda alternatif bir hedef bölge olarak caudat
nukleusun   kullanılabileceği  düşünülmektedir.

References

  • 1. Ribas EC, Yagmurlu K, de Oliveira E, Ribas GC, Rhoton A, Jr. Microsurgical anatomy of the central core of the brain. J Neurosurg. 2017:1-18.
  • 2. Baydin S, Yagmurlu K, Tanriover N, Gungor A, Rhoton AL, Jr. Microsurgical and Fiber Tract Anatomy of the Nucleus Accumbens. Oper Neurosurg (Hagerstown). 2016;12(3):269-88.
  • 3. Kier EL, Staib LH, Davis LM, Bronen RA. Anatomic dissection tractography: a new method for precise MR localization of white matter tracts. AJNR Am J Neuroradiol. 2004;25(5):670-6.
  • 4. Burks JD, Conner AK, Bonney PA, Glenn CA, Baker CM, Boettcher LB, et al. Anatomy and white matter connections of the orbitofrontal gyrus. J Neurosurg. 2018;128(6):1865-72.
  • 5. Choi CY, Han SR, Yee GT, Lee CH. Central core of the cerebrum. J Neurosurg. 2011;114(2):463-9.
  • 6. Yagmurlu K, Vlasak AL, Rhoton AL, Jr. Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery. 2015;11 Suppl 2:274-305; discussion
  • 7. Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008;86(3):141-55.
  • 8. Ding L. Distinct dynamics of ramping activity in the frontal cortex and caudate nucleus in monkeys. J Neurophysiol. 2015;114(3):1850-61.
  • 9. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18(1):7-21.
  • 10. Schiff ND, Fins JJ. Deep brain stimulation and cognition: moving from animal to patient. Curr Opin Neurol. 2007;20(6):638-42.
  • 11. J. K. Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 1935;36:247–56.
  • 12. Ribas EC, Yagmurlu K, de Oliveira E, Ribas GC, Rhoton A, Jr. Microsurgical anatomy of the central core of the brain. J Neurosurg. 2018;129(3):752-69.
  • 13. Kim MJ, Hamilton JP, Gotlib IH. Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Res. 2008;164(2):114-22.
  • 14. Kotz SA, Anwander A, Axer H, Knosche TR. Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus. PLoS One. 2013;8(7):e70141.
  • 15. Yeterian EH, Pandya DN. Corticostriatal connections of extrastriate visual areas in rhesus monkeys. J Comp Neurol. 1995;352(3):436-57.
  • 16. Im I, Jun JP, Hwang S, Ko MH. Swallowing outcomes in patients with subcortical stroke associated with lesions of the caudate nucleus and insula. J Int Med Res. 2018;46(9):3552-62.
  • 17. Alarcon C, de Notaris M, Palma K, Soria G, Weiss A, Kassam A, et al. Anatomic study of the central core of the cerebrum correlating 7-T magnetic resonance imaging and fiber dissection with the aid of a neuronavigation system. Neurosurgery. 2014;10 Suppl 2:294-304; discussion
  • 18. Postle BR, D'Esposito M. Spatial working memory activity of the caudate nucleus is sensitive to frame of reference. Cogn Affect Behav Neurosci. 2003;3(2):133-44.
  • 19. Postle BR, D'Esposito M. Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. Brain Res Cogn Brain Res. 1999;8(2):107-15.
  • 20. White NM. Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behav Brain Res. 2009;199(1):3-23.
  • 21. Da Cunha C, Packard MG. Special issue on the role of the basal ganglia in learning and memory. Preface. Behav Brain Res. 2009;199(1):1-2.
  • 22. Foerde K, Shohamy D. The role of the basal ganglia in learning and memory: insight from Parkinson's disease. Neurobiol Learn Mem. 2011;96(4):624-36.
  • 23. Grahn JA, Parkinson JA, Owen AM. The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res. 2009;199(1):53-60.
  • 24. Elliott R, Newman JL, Longe OA, Deakin JF. Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci. 2003;23(1):303-7.
  • 25. Levitt JJ, McCarley RW, Dickey CC, Voglmaier MM, Niznikiewicz MA, Seidman LJ, et al. MRI study of caudate nucleus volume and its cognitive correlates in neuroleptic-naive patients with schizotypal personality disorder. Am J Psychiatry. 2002;159(7):1190-7.
  • 26. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004;27:1-28.
  • 27. Seger CA, Cincotta CM. The roles of the caudate nucleus in human classification learning. J Neurosci. 2005;25(11):2941-51.
  • 28. Chiu YC, Jiang J, Egner T. The Caudate Nucleus Mediates Learning of Stimulus-Control State Associations. J Neurosci. 2017;37(4):1028-38.
  • 29. Gronholm EO, Roll MC, Horne MA, Sundgren PC, Lindgren AG. Predominance of caudate nucleus lesions in acute ischaemic stroke patients with impairment in language and speech. Eur J Neurol. 2016;23(1):148-53.
  • 30. Villablanca JR. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res. 2004;13(3):179-208.
  • 31. Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmacher T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006;129(Pt 3):655-67.
  • 32. Aron A, Fisher H, Mashek DJ, Strong G, Li H, Brown LL. Reward, motivation, and emotion systems associated with early-stage intense romantic love. J Neurophysiol. 2005;94(1):327-37.
  • 33. Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS One. 2011;6(7):e21852.
  • 34. Crinion J, Turner R, Grogan A, Hanakawa T, Noppeney U, Devlin JT, et al. Language control in the bilingual brain. Science. 2006;312(5779):1537-40.
  • 35. Fernandez-Miranda JC, Rhoton AL, Jr., Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 Suppl 3):989-1026; discussion -8.
  • 36. Butters MA, Aizenstein HJ, Hayashi KM, Meltzer CC, Seaman J, Reynolds CF, 3rd, et al. Three-dimensional surface mapping of the caudate nucleus in late-life depression. Am J Geriatr Psychiatry. 2009;17(1):4-12.
  • 37. Hickie IB, Naismith SL, Ward PB, Scott EM, Mitchell PB, Schofield PR, et al. Serotonin transporter gene status predicts caudate nucleus but not amygdala or hippocampal volumes in older persons with major depression. J Affect Disord. 2007;98(1-2):137-42.
  • 38. Bartres-Faz D, Junque C, Serra-Grabulosa JM, Lopez-Alomar A, Moya A, Bargallo N, et al. Dopamine DRD2 Taq I polymorphism associates with caudate nucleus volume and cognitive performance in memory impaired subjects. Neuroreport. 2002;13(9):1121-5.
  • 39. Nakamura K, Hikosaka O. Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J Neurosci. 2006;26(20):5360-9.
  • 40. Krishna Karthik D, Khardenavis V, Kulkarni S, Deshpande A. Global aphasia in a case of bilateral frontal lobe infarcts involving both caudate nuclei. BMJ Case Rep. 2017;2017.
  • 41. Tang WK, Liang HJ, Chen YK, Chu WC, Abrigo J, Mok VC, et al. Poststroke fatigue is associated with caudate infarcts. J Neurol Sci. 2013;324(1-2):131-5.
  • 42. Pellizzaro Venti M, Paciaroni M, Caso V. Caudate infarcts and hemorrhages. Front Neurol Neurosci. 2012;30:137-40.
  • 43. Bierer J, Wolf A, Lee DH, Rotenberg BW, Duggal N. Bilateral caudate nucleus infarcts: A case report of a rare complication following endoscopic resection of a tuberculum sellae meningioma. Surg Neurol Int. 2017;8:235.
  • 44. Kumral E, Evyapan D, Balkir K. Acute caudate vascular lesions. Stroke. 1999;30(1):100-8.
  • 45. Degos JD, da Fonseca N, Gray F, Cesaro P. Severe frontal syndrome associated with infarcts of the left anterior cingulate gyrus and the head of the right caudate nucleus. A clinico-pathological case. Brain. 1993;116 ( Pt 6):1541-8.
  • 46. Mandelli ML, Savoiardo M, Minati L, Mariotti C, Aquino D, Erbetta A, et al. Decreased diffusivity in the caudate nucleus of presymptomatic huntington disease gene carriers: which explanation? AJNR Am J Neuroradiol. 2010;31(4):706-10.
  • 47. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol. 1996;39(3):385-9.
  • 48. Broussolle E, Dentresangle C, Landais P, Garcia-Larrea L, Pollak P, Croisile B, et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease. J Neurol Sci. 1999;166(2):141-51.
  • 49. Owen AM. Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. Neuroscientist. 2004;10(6):525-37.
  • 50. Arregui A, Perry EK, Rossor M, Tomlinson BE. Angiotensin converting enzyme in Alzheimer's disease increased activity in caudate nucleus and cortical areas. J Neurochem. 1982;38(5):1490-2.
  • 51. Barber R, McKeith I, Ballard C, O'Brien J. Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia. J Neurol Neurosurg Psychiatry. 2002;72(3):406-7.
  • 52. Robinson D, Wu H, Munne RA, Ashtari M, Alvir JM, Lerner G, et al. Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch Gen Psychiatry. 1995;52(5):393-8.
  • 53. Rigoard P, Buffenoir K, Jaafari N, Giot JP, Houeto JL, Mertens P, et al. The accumbofrontal fasciculus in the human brain: a microsurgical anatomical study. Neurosurgery. 2011;68(4):1102-11; discussion 11.
  • 54. Rosso IM, Olson EA, Britton JC, Stewart SE, Papadimitriou G, Killgore WD, et al. Brain white matter integrity and association with age at onset in pediatric obsessive-compulsive disorder. Biol Mood Anxiety Disord. 2014;4(1):13.
  • 55. Singh VK, Rivas WH. Prevalence of serum antibodies to caudate nucleus in autistic children. Neurosci Lett. 2004;355(1-2):53-6.
  • 56. Molina V, Lubeiro A, Blanco J, Blanco JA, Rodriguez M, Rodriguez-Campos A, et al. Parkinsonism is associated to fronto-caudate disconnectivity and cognition in schizophrenia. Psychiatry Res Neuroimaging. 2018;277:1-6.
  • 57. Hoptman MJ, Volavka J, Czobor P, Gerig G, Chakos M, Blocher J, et al. Aggression and quantitative MRI measures of caudate in patients with chronic schizophrenia or schizoaffective disorder. J Neuropsychiatry Clin Neurosci. 2006;18(4):509-15.
  • 58. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Applied neurophysiology. 1987;50(1-6):344-6.
  • 59. Gabriels L. Deep brain stimulation for psychiatric disorders. Psychiatr Danub. 2010;22 Suppl 1:S162.
  • 60. Nuttin BJ, Gabriels L, van Kuyck K, Cosyns P. Electrical stimulation of the anterior limbs of the internal capsules in patients with severe obsessive-compulsive disorder: anecdotal reports. Neurosurgery clinics of North America. 2003;14(2):267-74.
  • 61. Arya S, Filkowski MM, Nanda P, Sheth SA. Deep brain stimulation for obsessive-compulsive disorder. Bull Menninger Clin. 2019;83(1):84-96.
  • 62. Lucas-Jimenez O, Ojeda N, Pena J, Diez-Cirarda M, Cabrera-Zubizarreta A, Gomez-Esteban JC, et al. Altered functional connectivity in the default mode network is associated with cognitive impairment and brain anatomical changes in Parkinson's disease. Parkinsonism Relat Disord. 2016;33:58-64.
  • 63. Costentin G, Derrey S, Gerardin E, Cruypeninck Y, Pressat-Laffouilhere T, Anouar Y, et al. White matter tracts lesions and decline of verbal fluency after deep brain stimulation in Parkinson's disease. Hum Brain Mapp. 2019;40(9):2561-70.
  • 64. Synofzik M, Schlaepfer TE. Electrodes in the brain--ethical criteria for research and treatment with deep brain stimulation for neuropsychiatric disorders. Brain Stimul. 2011;4(1):7-16.
  • 65. Vergani F, Martino J, Morris C, Attems J, Ashkan K, Dell'Acqua F. Anatomic Connections of the Subgenual Cingulate Region. Neurosurgery. 2016;79(3):465-72.
  • 66. Schlapfer T, Volkmann J, Deuschl G. [Deep brain stimulation in neurology and psychiatry]. Nervenarzt. 2014;85(2):135-6.
  • 67. Fink GR. [Deep brain stimulation in neurology and psychiatry]. Fortschr Neurol Psychiatr. 2010;78(2):69.
  • 68. Ashkan K, Shotbolt P, David AS, Samuel M. Deep brain stimulation: a return journey from psychiatry to neurology. Postgrad Med J. 2013;89(1052):323-8.
  • 69. Elliott M, Momin S, Fiddes B, Farooqi F, Sohaib SA. Pacemaker and Defibrillator Implantation and Programming in Patients with Deep Brain Stimulation. Arrhythm Electrophysiol Rev. 2019;8(2):138-42.
  • 70. Casagrande SCB, Cury RG, Alho EJL, Fonoff ET. Deep brain stimulation in Tourette's syndrome: evidence to date. Neuropsychiatr Dis Treat. 2019;15:1061-75.
  • 71. Baylis F. "I Am Who I Am": On the Perceived Threats to Personal Identity from Deep Brain Stimulation. Neuroethics. 2013;6:513-26.
  • 72. Liu JK, Soliman H, Machado A, Deogaonkar M, Rezai AR. Intracranial hemorrhage after removal of deep brain stimulation electrodes. J Neurosurg. 2012;116(3):525-8.
  • 73. Pelzer E, Pauls AK, Binder E, Brunn A, Fink GR, Timmermann L. Deep brain stimulation in rapidly progressive Parkinson-dystonia syndrome due to mitochondrial disorder. Parkinsonism Relat Disord. 2012;18(5):672-4.
  • 74. Kraemer F. Me, Myself and My Brain Implant: Deep Brain Stimulation Raises Questions of Personal Authenticity and Alienation. Neuroethics. 2013;6:483-97.
  • 75. Schermer M. Health, Happiness and Human Enhancement-Dealing with Unexpected Effects of Deep Brain Stimulation. Neuroethics. 2013;6:435-45.
  • 76. Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomical review of the ventral capsule/ventral striatum and the nucleus accumbens to guide target selection for deep brain stimulation for obsessive-compulsive disorder. World Neurosurg. 2019 Feb 18. pii: S1878-8750(19)30372-9. doi: 10.1016/j.wneu.2019.01.254. [Epub ahead of print]
  • 77. Peisker CB, Schuller T, Peters J, Wagner BJ, Schilbach L, Muller UJ, et al. Nucleus Accumbens Deep Brain Stimulation in Patients with Substance Use Disorders and Delay Discounting. Brain Sci. 2018;8(2).
  • 78. Butters N, Rosvold HE. Effect of caudate and septal nuclei lesions on resistance to extinction and delayed-alternation. J Comp Physiol Psychol. 1968;65(3):397-403.
  • 79. Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Botzel K. Deep Brain Stimulation Programming 2.0: Future Perspectives for Target Identification and Adaptive Closed Loop Stimulation. Front Neurol. 2019;10:314.
There are 79 citations in total.

Details

Primary Language English
Subjects Surgery
Journal Section Research Articles
Authors

Hüseyin Biçeroğlu 0000-0003-2306-0826

Publication Date March 1, 2020
Submission Date August 9, 2019
Acceptance Date September 27, 2019
Published in Issue Year 2020

Cite

Vancouver Biçeroğlu H. MICROSURGICAL ANATOMY OF THE CONNECTIONS OF CAUDATE NUCLEUS AND PSYCHOSURGICAL CONSIDERATIONS : A UNIQUE CADAVER STUDY. Med J SDU. 2020;27(1):1-7.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.