Research Article
BibTex RIS Cite

VİTİS VİNİFERA ÇEKİRDEK ÖZÜTÜ KULLANILARAK ALTIN NANOPARTİKÜLLERİN YEŞİL SENTEZİ VE KOLON KANSERİ (HT-29) HÜCRELERİNDE ANTİ- KANSER ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ

Year 2021, , 455 - 464, 13.09.2021
https://doi.org/10.17343/sdutfd.875236

Abstract

Amaç
Son yıllarda metalik nanopartiküller antioksidan, antimikrobiyal
ve antikanser etkinlikleri ile nanotıp alanında
oldukça dikkat çekmektedir. Özellikle, kanser
tedavisinde farmakolojik etkinliği bilinen tıbbi bitkilerden
yeşil sentez metodu ile üretilen metal nanopartiküller
araştırmacıların ilgi odağı haline gelmiştir. Altın
nanopartiküller; kendilerine özgü kimyasal, fiziksel ve
nontoksik özellikleri ile ön plana çıkan metal nanopartiküllerden
biridir. Çalışmamızda, üzüm (Vitis vinifera)
çekirdeği sulu ekstraktı kullanılarak yeşil sentezi
gerçekleştirilen altın nanopartiküllerin (Vv-AuNP) tek
başına ve kemoterapötik bir ajan olan Gemsitabin ile
kombine kullanımının HT-29 kolon kanseri hücre hattı
üzerindeki sitotoksik, anti-proliferatif ve apoptotik etkilerinin
değerlendirilmesi amaçlanmıştır.
Gereç ve Yöntem
Altın nanopartiküllerin yeşil sentezi, Vitis vinifera
sulu özütü kullanılarak gerçekleştirildi. Vv-AuNP’lerin
UV-görünür spektrofotometre, taramalı elektron
mikroskobu (SEM) ve Enerji Dağılımlı X-ışını Spektroskopisi
(EDX) gibi çeşitli analitik tekniklerle karakterizasyonu
yapıldı. Vv-AuNP'ler 0–80 μg/mL doz
aralığında tek başına ve Gemsitabin (100 μg/mL veya
200 μg/mL sabit doz) ile kombine olacak şekilde HT-
29 hücreleri ile 72 saat süresince muamele edildi.
Sitotoksik etkileri MTT testi ile değerlendirildi. Ayrıca,
HT-29 hücreleri üzerine Vv-AuNP’lerin artan dozlarda
(0-400μg/mL) tek başına ve Gemsitabin ile kombine
antiproliferatif etkileri ise BrdU testi ile belirlendi. Altın
nanopartiküllerin HT-29 hücreleri ile muamelesi sonrası
Kaspaz-3 aktivasyon düzeyi Western-blot yöntemi
ile analiz edildi.
Bulgular
MTT sonuçları değerlendirildiğinde Vv-AuNP’lerin 80
μg/mL doza kadar çıkıldığında HT-29 hücrelerinde
istenilen düzeyde sitotoksik etkiler göstermediği belirlendi.
BrdU hücre proliferasyon testi sonuçlarına dayalı
olarak, Vv-AuNP’lerin tek başına ve Gemsitabin
ile birlikte uygulamalarında IC50 değerleri sırasıyla
147.9 ve 39.43 μg/mL olarak belirlendi. Vv-AuNP dozlarına
bağlı kaspaz-3 aktivasyonunun kontrole kıyasla
arttığı, Gemsitabin ile kombine kullanımının bu etkiyi
güçlendirdiği gözlendi.
Sonuç
Sonuç olarak, yeşil sentezlenmiş AuNP’ler in vitro koşullarda
kolon kanseri hücreleri üzerinde anti-kanser
özellikler sergilemiştir. Bu çalışmanın sonuçları, Vv-AuNP'lerin
kolon kanseri tedavisi için potansiyel bir seçenek
olarak düşünülebileceğini göstermektedir.

Supporting Institution

Burudur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

0595-YL-19

References

  • 1. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006;6(12):924- 935.
  • 2. Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi M. Colorectal Carcinoma. A General Overview and Future Perspectives in Colorectal Cancer. Int J Mol Sci 2017;18(1):197.
  • 3. Ahmed M. Colon cancer: a clinician's perspective in 2019. Gastroenterology Res 2020;13(1):1–10.
  • 4. Baykara O. Kanser tedavisinde güncel yaklaşımlar. Balikesir Saglik Bil Derg 2016;5(3):154-165.
  • 5. Aydın Acar Ç, Pehlivanoğlu S. Biosynthesis of Silver Nanoparticles Using Rosa canina Extract and Its Anti-cancer and Antimetastatic Activity on Human Colon Adenocarcinoma Cell Line HT29. MAKU J. Health Sci. Inst. 2019;7(2):124-131.
  • 6. Osuwa JC, Anusionwu PC. Some advances and prospects in nanotechnology: a review. Asian J Inf Technol 2011;10:96-100.
  • 7. Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production 2020;272:122880.
  • 8. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 2008;10:507–517.
  • 9. Kumar V, Yadav SK. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 2009;84:151–157.
  • 10. Kamran U, Bhatti HN, Iqbal M, Nazir A. Green synthesis of metal nanoparticles and their applications in different fields: a review. Zeitschrift für Physikalische Chemie 2019;233(9):1325- 1349.
  • 11. Yesilot S, Aydin CA. Silver nanoparticles; a new hope in cancer therapy?. Eastern Journal of Medicine 2019;24(1):111-116.
  • 12. Kwatra B. A review on potential properties and therapeutic applications of grape seed extract. World J. Pharm. Res 2020;9:2519-2540.
  • 13. Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. Journal of Functional Foods 2020;67:103861.
  • 14. Nassiri‐Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitisvinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res. 2016;30:1392–1403.
  • 15. Akhtar M, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 2013;1:591-602.
  • 16. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv 2012;2012:751075.
  • 17. Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 2016;44(3):811-6.
  • 18. Tan G, Onur MA, Sağlam N. Utilization of gold nanostructures in biomedical applications. Turk J Biol 2012; 36:607- 621.
  • 19. Biao L, Tan S, Meng Q, Gao J, Zhang X, Liu Z, Fu Y. Green synthesis, characterization and application of proanthocyanidins- functionalized gold nanoparticles. Nanomaterials 2018;8(1):53.
  • 20. Hamelian M, Hemmati S, Varmira K, Veisi H. Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. Journal of the Taiwan Institute of Chemical Engineers 2018;93:21-30.
  • 21. Usman AI, Aziz AA, Noqta OA. Application of green synthesis of gold nanoparticles: A review. Jurnal Teknologi 2019;81(1):171- 182.
  • 22. Noah N. Green synthesis: Characterization and application of silver and gold nanoparticles. Micro and Nano Technologies 2019;111-135.
  • 23. Noble S, Goa KL. Gemcitabine. Drugs 1997;54(3):447-472.
  • 24. Guo X, Xu B, Pandey S, Goessl E, Brown J, Armesilla AL, Wang W. Disulfiram/copper complex inhibiting NFκB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines. Cancer letters 2010;290(1):104-113.
  • 25. Ramsden J. Essentials of nanotechnology. Nanotechnology © 2009 Jeremy Ramsden & Ventus Publishing ApS, ISBN 978- 87-7681-418-2; 2009.
  • 26. Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008;1(1):17- 32.
  • 27. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical Applications of Functionalized Gold Nanoparticles: A Review. Journal of Cluster Science 2021.https://doi. org/10.1007/s10876-020-01955-9
  • 28. Datkhile KD, Patil SR, Durgawale PP. et al. Biogenic synthesis of gold nanoparticles using Argemone mexicana L. and their cytotoxic and genotoxic effects on human colon cancer cell line (HCT-15). J Genet Eng Biotechnol 2021;19:9.
  • 29. Zhang Y, Elechalawar CK, Hossen MN, Francek ER, Dey A, Wilhelm S, et al. Gold nanoparticles inhibit activation of cancer- associated fibroblasts by disrupting communication from tumor and microenvironmental cells. Bioactive materials 2021;6(2):326-332.
  • 30. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 2016;24(4):473-84.
  • 31. Baran MF, Saydut A. Altın nanomalzeme sentezi ve karekterizasyonu. DÜMF Müh Der. 2019;10(3):1033-1040.
  • 32. Umamaheswari C, Lakshmanan A, Nagarajan NS. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J Photoch Photobio B 2018;178:33-39.
  • 33. Zhang P, Wang P, Yan L, Liu L. Synthesis of gold nanoparticles with Solanum xanthocarpum extract and their in vitro anticancer potential on nasopharyngeal carcinoma cells. In j nanomed 2018;13:7047.
  • 34. Asariha M, Chahardoli A, Karimi N, Gholamhosseinpour M, Khoshroo A, Nemati H, et al. Green synthesis and structural characterization of gold nanoparticles from Achillea wilhelmsii leaf infusion and in vitro evaluation. Bull Mater Sci 2020;43:57.
  • 35. Islam NU, Jalil K, Shahid M, Muhammad N, Rauf A. Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arab J Chem 2019;12(8):2310-2319.
  • 36. Zhang X, Fan L, Cui Y, Cui T, Chen S, Ma G, et al. Green synthesis of gold nanoparticles using longan polysaccharide and their reduction of 4-nitrophenol and biological applications. Nano 2020;15(1):2050002.
  • 37. Kumar PV, Kala SMJ, Prakash KS. Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater Lett 2019;236:19-22.
  • 38. Izadiyan Z, Shameli K, Hara H, Taib SHM. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract. Journal of Molecular Structure 2018;1151:97-105.
  • 39. Abu-Tahon MA, Ghareib M, Abdallah WE. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochemistry 2020;95:1-11.
  • 40. Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R. Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells. Materials Letters 2019;236:498-502.
  • 41. Shahriari M, Hemmati S, Zangeneh A, Zangeneh MM. Biosynthesis of gold nanoparticles using Allium noeanum Reut. ex Regel leaves aqueous extract; characterization and analysis of their cytotoxicity, antioxidant, and antibacterial properties. Applied organometallic chemistry 2019;33(11):e5189.
  • 42. Dey A, Yogamoorthy A, SM S. Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences 2018;4:1-17.
  • 43. Carmichael J. The role of gemcitabine in the treatment of other tumours. Br J Cancer 1998;78:21-25.
  • 44. Sarvepalli D, Rashid MU, Rahman AU, Ullah W, Hussain I, Hasan B, et al. Gemcitabine: a review of chemoresistance in pancreatic cancer. Critical Reviews™ in Oncogenesis 2019;24(2).
  • 45. Wang F, Wang Y, Ma Q, Cao Y, Yu B. Development and characterization of folic acid-conjugated chitosan nanoparticles for targeted and controlled delivery of gemcitabinein lung cancer therapeutics. Artif Cells Nanomed B 2017;45(8):1530-1538.
  • 46. Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 2017;12:6487–6502.
  • 47. Devi L, Gupta R, Jain SK, Singh S, Kesharwani P. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Tec 2020;56:101565.
  • 48. Baharara J, Ramezani T, Divsalar A, Mousavi M, Seyedarabi A. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells. Avicenna J Med Biotechnol. 2016;8(2):75-83.
  • 49. Mata R, Nakkala JR, Sadras SR. Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells, Colloids and Surfaces B: Biointerfaces, 2016;143:499-510.

GREEN SYNTHESIS OF GOLD NANOPARTICLES USING VITIS VINIFERA SEED EXTRACT AND EVALUATION OF ANTI-CANCER PROPERTIES IN COLON CANCER (HT-29) CELLS

Year 2021, , 455 - 464, 13.09.2021
https://doi.org/10.17343/sdutfd.875236

Abstract

Objective
In recent years, metallic nanoparticles have attracted
the attention in the field of nanomedicine with their
antioxidant, antimicrobial and anticancer activities.
Especially, metal nanoparticles produced by green
synthesis method from medicinal plants with known
pharmacological efficacy in cancer treatment have
been spotlighted by researchers.. Gold nanoparticles;
become prominentamong metal nanoparticles
with their unique chemical, physical and non-toxic
properties. In this study, it was aimed to perform
green synthesis of gold nanoparticles using Vitis
vinifera (grape seed) aqueous extract and to evaluate
cytotoxic, anti-proliferative and apoptotic effects
of gold nanoparticles (Vv-AuNP) alone and with
Gemcitabine co-administration on HT-29 human
colon cancer cell line.
Materials and Methods
Green synthesis of gold nanoparticles was carried out
using the aqueous extract of Vitis vinifera. Vv-AuNPs
were characterized by various analytical techniques
such as UV-visible spectrophotometer, scanning
electron microscope (SEM) and Energy Dispersive
X-ray Spectroscopy (EDX). Vv-AuNPs were treated
with HT-29 cells at a dose range of 0–80 μg / mL for
72 hours, alone and in combination with Gemcitabine
(100 μg / mL or 200 μg / mL fixed dose). Cytotoxic
effects were evaluated by MTT assay. In addition,
the antiproliferative effects of Vv-AuNPs at increasing
doses (0-400 μg / mL) alone and combined with
Gemcitabine were determined by the BrdU test. After
treatment of gold nanoparticles with HT-29 cells,
the level of Caspase-3 activation was analyzed by
Western-blot method.
Results
According to MTT results, when the dose of Vv-
AuNPs was increased to 80 μg / mL, it was determined
that HT-29 cells did not show the expected level of
cytotoxic effect. According to the results of the BrdU
cell proliferation test, IC50 values of Vv-AuNPs alone
and combined with Gemcitabine were determined
as 147.9 and 39.43 μg / mL, respectively. It was
observed that the activation of caspase-3 due to Vv-
AuNP doses increased compared to control, and its
combined use with Gemcitabine reinforced this effect.
Conclusion
As a result, green synthesized AuNPs exhibited
anti-cancer properties on colon cancer cells in vitro.
The results of this study show that Vv-AuNPs can
be considered as a potential option for colon cancer
treatment.

Project Number

0595-YL-19

References

  • 1. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006;6(12):924- 935.
  • 2. Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi M. Colorectal Carcinoma. A General Overview and Future Perspectives in Colorectal Cancer. Int J Mol Sci 2017;18(1):197.
  • 3. Ahmed M. Colon cancer: a clinician's perspective in 2019. Gastroenterology Res 2020;13(1):1–10.
  • 4. Baykara O. Kanser tedavisinde güncel yaklaşımlar. Balikesir Saglik Bil Derg 2016;5(3):154-165.
  • 5. Aydın Acar Ç, Pehlivanoğlu S. Biosynthesis of Silver Nanoparticles Using Rosa canina Extract and Its Anti-cancer and Antimetastatic Activity on Human Colon Adenocarcinoma Cell Line HT29. MAKU J. Health Sci. Inst. 2019;7(2):124-131.
  • 6. Osuwa JC, Anusionwu PC. Some advances and prospects in nanotechnology: a review. Asian J Inf Technol 2011;10:96-100.
  • 7. Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production 2020;272:122880.
  • 8. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 2008;10:507–517.
  • 9. Kumar V, Yadav SK. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 2009;84:151–157.
  • 10. Kamran U, Bhatti HN, Iqbal M, Nazir A. Green synthesis of metal nanoparticles and their applications in different fields: a review. Zeitschrift für Physikalische Chemie 2019;233(9):1325- 1349.
  • 11. Yesilot S, Aydin CA. Silver nanoparticles; a new hope in cancer therapy?. Eastern Journal of Medicine 2019;24(1):111-116.
  • 12. Kwatra B. A review on potential properties and therapeutic applications of grape seed extract. World J. Pharm. Res 2020;9:2519-2540.
  • 13. Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. Journal of Functional Foods 2020;67:103861.
  • 14. Nassiri‐Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitisvinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res. 2016;30:1392–1403.
  • 15. Akhtar M, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 2013;1:591-602.
  • 16. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv 2012;2012:751075.
  • 17. Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 2016;44(3):811-6.
  • 18. Tan G, Onur MA, Sağlam N. Utilization of gold nanostructures in biomedical applications. Turk J Biol 2012; 36:607- 621.
  • 19. Biao L, Tan S, Meng Q, Gao J, Zhang X, Liu Z, Fu Y. Green synthesis, characterization and application of proanthocyanidins- functionalized gold nanoparticles. Nanomaterials 2018;8(1):53.
  • 20. Hamelian M, Hemmati S, Varmira K, Veisi H. Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. Journal of the Taiwan Institute of Chemical Engineers 2018;93:21-30.
  • 21. Usman AI, Aziz AA, Noqta OA. Application of green synthesis of gold nanoparticles: A review. Jurnal Teknologi 2019;81(1):171- 182.
  • 22. Noah N. Green synthesis: Characterization and application of silver and gold nanoparticles. Micro and Nano Technologies 2019;111-135.
  • 23. Noble S, Goa KL. Gemcitabine. Drugs 1997;54(3):447-472.
  • 24. Guo X, Xu B, Pandey S, Goessl E, Brown J, Armesilla AL, Wang W. Disulfiram/copper complex inhibiting NFκB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines. Cancer letters 2010;290(1):104-113.
  • 25. Ramsden J. Essentials of nanotechnology. Nanotechnology © 2009 Jeremy Ramsden & Ventus Publishing ApS, ISBN 978- 87-7681-418-2; 2009.
  • 26. Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008;1(1):17- 32.
  • 27. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical Applications of Functionalized Gold Nanoparticles: A Review. Journal of Cluster Science 2021.https://doi. org/10.1007/s10876-020-01955-9
  • 28. Datkhile KD, Patil SR, Durgawale PP. et al. Biogenic synthesis of gold nanoparticles using Argemone mexicana L. and their cytotoxic and genotoxic effects on human colon cancer cell line (HCT-15). J Genet Eng Biotechnol 2021;19:9.
  • 29. Zhang Y, Elechalawar CK, Hossen MN, Francek ER, Dey A, Wilhelm S, et al. Gold nanoparticles inhibit activation of cancer- associated fibroblasts by disrupting communication from tumor and microenvironmental cells. Bioactive materials 2021;6(2):326-332.
  • 30. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 2016;24(4):473-84.
  • 31. Baran MF, Saydut A. Altın nanomalzeme sentezi ve karekterizasyonu. DÜMF Müh Der. 2019;10(3):1033-1040.
  • 32. Umamaheswari C, Lakshmanan A, Nagarajan NS. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J Photoch Photobio B 2018;178:33-39.
  • 33. Zhang P, Wang P, Yan L, Liu L. Synthesis of gold nanoparticles with Solanum xanthocarpum extract and their in vitro anticancer potential on nasopharyngeal carcinoma cells. In j nanomed 2018;13:7047.
  • 34. Asariha M, Chahardoli A, Karimi N, Gholamhosseinpour M, Khoshroo A, Nemati H, et al. Green synthesis and structural characterization of gold nanoparticles from Achillea wilhelmsii leaf infusion and in vitro evaluation. Bull Mater Sci 2020;43:57.
  • 35. Islam NU, Jalil K, Shahid M, Muhammad N, Rauf A. Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arab J Chem 2019;12(8):2310-2319.
  • 36. Zhang X, Fan L, Cui Y, Cui T, Chen S, Ma G, et al. Green synthesis of gold nanoparticles using longan polysaccharide and their reduction of 4-nitrophenol and biological applications. Nano 2020;15(1):2050002.
  • 37. Kumar PV, Kala SMJ, Prakash KS. Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater Lett 2019;236:19-22.
  • 38. Izadiyan Z, Shameli K, Hara H, Taib SHM. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract. Journal of Molecular Structure 2018;1151:97-105.
  • 39. Abu-Tahon MA, Ghareib M, Abdallah WE. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochemistry 2020;95:1-11.
  • 40. Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R. Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells. Materials Letters 2019;236:498-502.
  • 41. Shahriari M, Hemmati S, Zangeneh A, Zangeneh MM. Biosynthesis of gold nanoparticles using Allium noeanum Reut. ex Regel leaves aqueous extract; characterization and analysis of their cytotoxicity, antioxidant, and antibacterial properties. Applied organometallic chemistry 2019;33(11):e5189.
  • 42. Dey A, Yogamoorthy A, SM S. Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences 2018;4:1-17.
  • 43. Carmichael J. The role of gemcitabine in the treatment of other tumours. Br J Cancer 1998;78:21-25.
  • 44. Sarvepalli D, Rashid MU, Rahman AU, Ullah W, Hussain I, Hasan B, et al. Gemcitabine: a review of chemoresistance in pancreatic cancer. Critical Reviews™ in Oncogenesis 2019;24(2).
  • 45. Wang F, Wang Y, Ma Q, Cao Y, Yu B. Development and characterization of folic acid-conjugated chitosan nanoparticles for targeted and controlled delivery of gemcitabinein lung cancer therapeutics. Artif Cells Nanomed B 2017;45(8):1530-1538.
  • 46. Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 2017;12:6487–6502.
  • 47. Devi L, Gupta R, Jain SK, Singh S, Kesharwani P. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Tec 2020;56:101565.
  • 48. Baharara J, Ramezani T, Divsalar A, Mousavi M, Seyedarabi A. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells. Avicenna J Med Biotechnol. 2016;8(2):75-83.
  • 49. Mata R, Nakkala JR, Sadras SR. Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells, Colloids and Surfaces B: Biointerfaces, 2016;143:499-510.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Selim Genç This is me 0000-0003-4966-2235

Suray Pehlivanoğlu 0000-0001-7422-2974

Çiğdem Aydın Acar 0000-0002-1311-2314

Şükriye Yeşilot 0000-0003-3354-8489

Project Number 0595-YL-19
Publication Date September 13, 2021
Submission Date February 5, 2021
Acceptance Date June 28, 2021
Published in Issue Year 2021

Cite

Vancouver Genç S, Pehlivanoğlu S, Aydın Acar Ç, Yeşilot Ş. VİTİS VİNİFERA ÇEKİRDEK ÖZÜTÜ KULLANILARAK ALTIN NANOPARTİKÜLLERİN YEŞİL SENTEZİ VE KOLON KANSERİ (HT-29) HÜCRELERİNDE ANTİ- KANSER ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. Med J SDU. 2021;28(3):455-64.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.