Review
BibTex RIS Cite

COVID-19 ve Diabetes Mellitus Yönetimi

Year 2021, , 171 - 175, 01.05.2021
https://doi.org/10.17343/sdutfd.904540

Abstract

Diyabetik hastalarda SARS-CoV-2 enfeksiyonu daha şiddetli seyretmekte, hastalığa bağlı yoğun bakım ihtiyaçları ve mortalite daha sık görülmektedir. Anjiyotensin dönüştürücü enzim-2 (ACE2), SARS-CoV-2'nin ana reseptörüdür. Diyabetli hastaların akciğerlerinde ACE2 ifadesinin artması ve hiperglisemi ile bu reseptörlerin glikozillenmesi onları COVID-19'a daha duyarlı hale getirir. Bununla birlikte akut veya kronik hiperglisemi doğal ve edinsel bağışıklık fonksiyonunu bozarak diyabetli hastalarda COVID-19 enfeksiyonunun ciddiyetine katkıda bulunur. SARS-CoV-2 yeni diyabet olguların gelişmesine neden olabileceği ve tip 1 diyabet sıklığında artışa yol açacağı da düşünülmektedir. Diyabetik hastalarda COVID-19 prognozunu iyileştirmede glisemik kontrolün sağlanması önemlidir. Glisemik regülasyonun sağlanması ile mortalite oranlarında önemli azalmalar sağlamaktadır. Solunum sıkıntısı olan ciddi hastalar ve kritik COVID-19 olgularında insülin tedavisi tercih edilmelidir. Hafif semptomatik veya asemptomatik bireylerde glisemik kontrol sağlanmışsa mevcut tedavisine devam edilir. Bu hastalarda oral antidiyabetik tedavilerin kesilmesine gerek yoktur. Glisemik kontrol sağlanamamışsa güncel diyabet tedavi klavuzlarına göre tedavileri yoğunlaştırılır. COVID-19 tedavisinde kullanılan deksametazon ve remdesivir tedavilerinin glisemik kontrolü bozabileceği öngörülerek antidiyabetik tedavi revizyonu yapılmalıdır. Diyabetli COVID-19 olgularında kan şekeri hedeflerini 140-180 mg/dl arasında tutmalı, hipoglisemi riski olmayanlarda alt sınır 110 mg/dl’ye düşürülebilir.

Supporting Institution

yok

Project Number

yok

Thanks

-

References

  • Referans1. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790.
  • Referans2. IDF Diabetes Atlas. 9th edition. https://www.diabetesatlas.org/en
  • Referans3. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS‐CoV‐2. J Endocrinol Invest. 2020;43(6):867‐9.
  • Referans4. Iacobellis G, Penaherrera CA, Bermudez LE, Bernal Mizrachi E. Admission hyperglycemia and radiological findings of SARS-CoV2 in patients with and without diabetes. Diabetes Res Clin Pract. 2020;164:108185.
  • Referans5. Zhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: a single-centre, retrospective, observational study in Wuhan. Diabetes Obes Metab. 2020;22(8):1443–54.
  • Referans6. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020;395:1225–8.
  • Referans7. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068–77.e3.
  • Referans8. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. J. Med. Virol. 2020;92(7):770–5.
  • Referans9. Liu W, Hualan L. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. 2020. Doi:10.26434/chemrxiv.12120912.
  • Referans10. Fernandez C, Rysa J, Almgren P, Nilsson J, Engstrom G, Orho-Melander M, et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med. 2018;284(4):377–87
  • Referans11. Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am J Med Sci. 2016;351(2):201-11.
  • Referans12. Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology. 2015;144(2):171-85.
  • Referans13. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020:e3319. doi: 10.1002/dmrr.3319.
  • Referans14. Wang J, Meng W. COVID-19 and diabetes: the contributions of hyperglycemia. J Mol Cell Biol. 2021;12(12):958-62.
  • Referans15. Rubino F, Amiel SA, Zimmet P. New-onset diabetes in covid-19. N Engl J Med. 2020;383(8):789–90.
  • Referans16. Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166
  • Referans17. Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610
  • Referans18. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–9.
  • Referans19. Jaeckel E, Manns M, von Herrath M. Viruses and diabetes. Ann N Y Acad Sci. 2002;958:7–25.
  • Referans20. Soliman AT, Al-Amri M, Alleethy K, Alaaraj N, Hamed N, De Sanctis V. Newly-onset type 1 diabetes mellitus precipitated by COVID-19 in an 8-month-old infant. Acta Biomed. 2020;91(3):ahead of print. doi: 10.23750/abm.v91i3.10074.
  • Referans21. Türkiye Endokrinoloji ve Metabolizma Derneği, Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve İzlem Kılavuzu, 14. basım Diabetes Mellitus Çalışma ve Eğitim Grubu.2020.
  • Referans22. Schacke H, Docke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002;96(1):23-43.
  • Referans23. Noor MA, Parker RA, O'Mara E, Grasela DM, Currie A, Hodder SL, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS. 2004;18(16):2137-44.
  • Referans24. Futatsugi H, Iwabu M, Okada-Iwabu M, Okamoto K, Amano Y, Morizaki Y, et al. Blood Glucose Control Strategy for Type 2 Diabetes Patients With COVID-19. Front Cardiovasc Med. 2020;7:593061. doi: 10.3389/fcvm.2020.593061
  • Referans25. Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GA. Covid-19 and Diabetes: A Complex Bidirectional Relationship. Front Endocrinol (Lausanne). 2020;11:582936.
  • Referans26. Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complications. 2020 Sep;34(9):107637
  • Referans27. Kajiwara C, Kusaka Y, Kimura S, Yamaguchi T. Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J Immunol. 2018;200(2):623–31.
  • Referans28. Jiang N, Chen Z, Liu L, Yin X, Yang H, Tan X, et al. Association of metformin with mortality or ARDS in patients with COVID-19 and type 2 diabetes: A retrospective cohort study. Diabetes Res Clin Pract. 2020;173:108619.
  • Referans29. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548-67.
  • Referans30. Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules. 2020;25(9):2076.
  • Referans31. Chen Y, Niu Z, Cui J, Shen P. The inhibitory effect of troglitazone on macrophage differentiation mediated by repressing NF-κB activation independently of PPARγ 2014;10(3):261–8.
  • Referans32. Schopman JE, Simon AC, Hoefnagel SJ, Hoekstra JB, Scholten RJ, Holleman F. The incidence of mild and severe hypoglycaemia in patients with type 2 diabetes mellitus treated with sulfonylureas: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2014;30(1):11-22.
  • Referans33. Zeller M, Danchin N, Simon D, Vahanian A, Lorgis L, Cottin Y, et al. Impact of type of preadmission sulfonylureas on mortality and cardiovascular outcomes in diabetic patients with acute myocardial infarction. J Clin Endocrinol Metab. 2010;95(11):4993–5002.
  • Referans34. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108-17.
  • Referans35. Kelly MS, Lewis J, Huntsberry AM, Dea L, Portillo I. Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med. 2019;131(1):31-42
  • Referans36. Cure E, Cumhur Cure M. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndr. 2020;14(4):405–6
  • Referans37. Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med. 2018;130(1):72-82
  • Referans38. Doupis J, Veves A. DPP4 inhibitors: a new approach in diabetes treatment. Adv Ther. 2008;25(7):627-43
  • Referans39. Higashijima Y, Tanaka T, Yamaguchi J, Tanaka S, Nangaku M. Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury. Am J Physiol Renal Physiol. 2015;308(8):F878-87.
  • Referans40. Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020;57(7):779-83.
  • Referans41. Li Y, Zhang Z, Yang L, Lian X, Xie Y, Li S, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience. 2020;23(8):101400
  • Referans42. Brunton SA, Wysham CH. GLP-1 receptor agonists in the treatment of type 2 diabetes: role and clinical experience to date. Postgrad Med. 2020;132(sup2):3-14.
  • Referans43. Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018; 6(2):105-13.
  • Referans44. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776-85.
  • Referans45. Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr. 2021;13(1):23
  • Referans46. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31(6):1068-77.e3.
  • Referans47 NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283-97.
  • Referans48. American Diabetes Association. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S193-S202.

COVID-19 and Diabetes Mellitus Management

Year 2021, , 171 - 175, 01.05.2021
https://doi.org/10.17343/sdutfd.904540

Abstract

SARS-CoV-2 infection has a more severe course in diabetic patients, intensive care needs and mortality related to the disease are more common in these patients. Angiotensin converting enzyme-2 (ACE2) is the main receptor of SARS-CoV-2. Increased ACE2 expression in the lungs of diabetic patients and glycolysis of these receptors with hyperglycemia make them more susceptible to COVID-19. In addition, acute or chronic hyperglycemia contributes to the severity of COVID-19 infection in patients with diabetes by impairing innate and acquired immune function. It is also thought that SARS-CoV-2 may cause the development of new diabetes cases and lead to an increase in the frequency of type 1 diabetes. Providing glycemic control is important in improving the prognosis of COVID-19 in diabetic patients. It provides significant reductions in mortality rates by providing glycemic regulation. Insulin therapy should be preferred in severe patients with respiratory distress and in critical COVID-19 cases. If glycemic control is achieved in mildly symptomatic or asymptomatic individuals, current treatment is continued. There is no need to discontinue oral antidiabetic therapies in these patients. If glycemic control cannot be achieved, their treatments are intensified according to the current diabetes treatment guidelines. Antidiabetic treatment revision should be made considering that dexamethasone and remdesivir treatments used in the treatment of COVID-19 may impair glycemic control. Blood glucose targets should be between 140-180 mg/dl in diabetic COVID-19 cases, and the lower limit can be reduced to 110 mg/dl in those who do not have hypoglycemia risk.

Project Number

yok

References

  • Referans1. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790.
  • Referans2. IDF Diabetes Atlas. 9th edition. https://www.diabetesatlas.org/en
  • Referans3. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS‐CoV‐2. J Endocrinol Invest. 2020;43(6):867‐9.
  • Referans4. Iacobellis G, Penaherrera CA, Bermudez LE, Bernal Mizrachi E. Admission hyperglycemia and radiological findings of SARS-CoV2 in patients with and without diabetes. Diabetes Res Clin Pract. 2020;164:108185.
  • Referans5. Zhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: a single-centre, retrospective, observational study in Wuhan. Diabetes Obes Metab. 2020;22(8):1443–54.
  • Referans6. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020;395:1225–8.
  • Referans7. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068–77.e3.
  • Referans8. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. J. Med. Virol. 2020;92(7):770–5.
  • Referans9. Liu W, Hualan L. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. 2020. Doi:10.26434/chemrxiv.12120912.
  • Referans10. Fernandez C, Rysa J, Almgren P, Nilsson J, Engstrom G, Orho-Melander M, et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med. 2018;284(4):377–87
  • Referans11. Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am J Med Sci. 2016;351(2):201-11.
  • Referans12. Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology. 2015;144(2):171-85.
  • Referans13. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020:e3319. doi: 10.1002/dmrr.3319.
  • Referans14. Wang J, Meng W. COVID-19 and diabetes: the contributions of hyperglycemia. J Mol Cell Biol. 2021;12(12):958-62.
  • Referans15. Rubino F, Amiel SA, Zimmet P. New-onset diabetes in covid-19. N Engl J Med. 2020;383(8):789–90.
  • Referans16. Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166
  • Referans17. Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610
  • Referans18. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–9.
  • Referans19. Jaeckel E, Manns M, von Herrath M. Viruses and diabetes. Ann N Y Acad Sci. 2002;958:7–25.
  • Referans20. Soliman AT, Al-Amri M, Alleethy K, Alaaraj N, Hamed N, De Sanctis V. Newly-onset type 1 diabetes mellitus precipitated by COVID-19 in an 8-month-old infant. Acta Biomed. 2020;91(3):ahead of print. doi: 10.23750/abm.v91i3.10074.
  • Referans21. Türkiye Endokrinoloji ve Metabolizma Derneği, Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve İzlem Kılavuzu, 14. basım Diabetes Mellitus Çalışma ve Eğitim Grubu.2020.
  • Referans22. Schacke H, Docke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002;96(1):23-43.
  • Referans23. Noor MA, Parker RA, O'Mara E, Grasela DM, Currie A, Hodder SL, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS. 2004;18(16):2137-44.
  • Referans24. Futatsugi H, Iwabu M, Okada-Iwabu M, Okamoto K, Amano Y, Morizaki Y, et al. Blood Glucose Control Strategy for Type 2 Diabetes Patients With COVID-19. Front Cardiovasc Med. 2020;7:593061. doi: 10.3389/fcvm.2020.593061
  • Referans25. Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GA. Covid-19 and Diabetes: A Complex Bidirectional Relationship. Front Endocrinol (Lausanne). 2020;11:582936.
  • Referans26. Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complications. 2020 Sep;34(9):107637
  • Referans27. Kajiwara C, Kusaka Y, Kimura S, Yamaguchi T. Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J Immunol. 2018;200(2):623–31.
  • Referans28. Jiang N, Chen Z, Liu L, Yin X, Yang H, Tan X, et al. Association of metformin with mortality or ARDS in patients with COVID-19 and type 2 diabetes: A retrospective cohort study. Diabetes Res Clin Pract. 2020;173:108619.
  • Referans29. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548-67.
  • Referans30. Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules. 2020;25(9):2076.
  • Referans31. Chen Y, Niu Z, Cui J, Shen P. The inhibitory effect of troglitazone on macrophage differentiation mediated by repressing NF-κB activation independently of PPARγ 2014;10(3):261–8.
  • Referans32. Schopman JE, Simon AC, Hoefnagel SJ, Hoekstra JB, Scholten RJ, Holleman F. The incidence of mild and severe hypoglycaemia in patients with type 2 diabetes mellitus treated with sulfonylureas: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2014;30(1):11-22.
  • Referans33. Zeller M, Danchin N, Simon D, Vahanian A, Lorgis L, Cottin Y, et al. Impact of type of preadmission sulfonylureas on mortality and cardiovascular outcomes in diabetic patients with acute myocardial infarction. J Clin Endocrinol Metab. 2010;95(11):4993–5002.
  • Referans34. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108-17.
  • Referans35. Kelly MS, Lewis J, Huntsberry AM, Dea L, Portillo I. Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med. 2019;131(1):31-42
  • Referans36. Cure E, Cumhur Cure M. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndr. 2020;14(4):405–6
  • Referans37. Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med. 2018;130(1):72-82
  • Referans38. Doupis J, Veves A. DPP4 inhibitors: a new approach in diabetes treatment. Adv Ther. 2008;25(7):627-43
  • Referans39. Higashijima Y, Tanaka T, Yamaguchi J, Tanaka S, Nangaku M. Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury. Am J Physiol Renal Physiol. 2015;308(8):F878-87.
  • Referans40. Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020;57(7):779-83.
  • Referans41. Li Y, Zhang Z, Yang L, Lian X, Xie Y, Li S, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience. 2020;23(8):101400
  • Referans42. Brunton SA, Wysham CH. GLP-1 receptor agonists in the treatment of type 2 diabetes: role and clinical experience to date. Postgrad Med. 2020;132(sup2):3-14.
  • Referans43. Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018; 6(2):105-13.
  • Referans44. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776-85.
  • Referans45. Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr. 2021;13(1):23
  • Referans46. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31(6):1068-77.e3.
  • Referans47 NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283-97.
  • Referans48. American Diabetes Association. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S193-S202.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Reviews
Authors

Hakan Korkmaz 0000-0001-5066-6335

Project Number yok
Publication Date May 1, 2021
Submission Date March 29, 2021
Acceptance Date April 16, 2021
Published in Issue Year 2021

Cite

Vancouver Korkmaz H. COVID-19 ve Diabetes Mellitus Yönetimi. Med J SDU. 2021;28(COVİD-19 ÖZEL SAYI):171-5.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.