Research Article
BibTex RIS Cite

SURFACE MODIFIED TITANIUM DIOXIDE/POLY (LACTIC ACID) NANOCOMPOSITE FILMS FOR TISSUE ENGINEERING

Year 2022, Volume: 29 Issue: 1, 111 - 120, 01.03.2022
https://doi.org/10.17343/sdutfd.1016353

Abstract

Objective
This study aims to synthesize and characterize the
nanocomposite films incorporating unmodified and
modified nanoparticles within the poly(lactic acid)
matrix, and to investigate their usage as an alternative
scaffold for tissue engineering.
Materials and Methods
Titanium dioxide (TiO2) nanoparticles were firstly
grafted by L-lactic acid oligomer (LA-g-TiO2) and the
mixture of propionic acid/hexylamine (AA-g-TiO2),
respectively. Then the unmodified and modified
nanoparticles were incorporated within the poly(lactic
acid) matrix via the solvent casting method to produce
the PLA/TiO2, PLA/LA-g-TiO2, and PLA/AA-g-TiO2
nanocomposite films. The chemical, thermal and
mechanical structures of these synthesized films were
subsequently characterized.
Results
The attenuated total reflectance (ATR) results
demonstrated that the surface modification of the
nanoparticles was accomplished. The results of
differential scanning calorimeter (DSC) analysis
showed that the crystallization of the PLA was
partly increased by the incorporation of modified
nanoparticles. The results of thermogravimetric
analysis (TGA) showed that the addition of LA-g-TiO2
into the polymer matrix improved the thermal stability
of PLA/LA-g-TiO2 nanocomposite film more than the
addition of AA-g-TiO2 into the polymer matrix. The
first and second decomposition temperatures of the
nanocomposites containing LA-g-TiO2 were 348.3 oC
and 392 oC, respectively, which were 6% greater than
those of the neat PLA. The micrograph of atomic force
microscopy (AFM) of the nanocomposites indicated
that LA-g-TiO2 and AA-g-TiO2 were homogeneously
dispersed in polymer matrices. The results of dynamic
mechanical analysis (DMA) demonstrated that the
most efficient bonding and compatibility were obtained
in PLA/LA-g-TiO2 nanocomposite compared to the
other nanocomposites.
Conclusion
These grafted nanoparticles, LA-g-TiO2 and AA-g-
TiO2, enhanced the thermal and mechanical properties
of the nanocomposites owing to their uniform
distribution in the matrix and good interactions with the
polymeric matrix. Therefore, these nanocomposites
can be utilized as alternative scaffolds in bone tissue
engineering.

Supporting Institution

Gazi Üniversitesi

Project Number

BAP 06/2012-03

Thanks

The authors are immensely grateful to Prof. Dr. Nursel Dilsiz for her endless help.

References

  • Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nature Protocols 2016;11(10):1775-81.
  • Ghosal K, Agatemor C, Spitalsky Z, Thomas S, Kny E. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal 2019;358:1262-78.
  • Saber-Samandari S, Yekta H, Ahmadi S, Alamara K. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. International Journal of Biological Macromolecules 2018;106:481-8.
  • Rajeshwari V, Fernando J. Poly paraphenylene diamine/titanium dioxide/exfoliated graphite nanocomposites: Synthesis and characterisation. Materials Today 2021; Proceedings, In press.
  • Lu X, Lv X, Sun Z, Zheng Y. Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. European Polymer Journal 2008;44(8):2476-81.
  • Wang Y, Dai J, Zhang Q, Xiao Y, Lang M. Improved mechanical properties of hydroxyapatite/poly(ε-caprolactone) scaffolds by surface modification of hydroxyapatite. Applied Surface Science 2010;256(20):6107-12.
  • Shebi A, Lisa S. Evaluation of biocompatibility and bactericidal activity of hierarchically porous PLA-TiO2 nanocomposite films fabricated by breath-figure method. Materials Chemistry and Physics 2019;230:308-18.
  • Fonseca C, Ochoa A, Ulloa MT, Alvarez E, Canales D, Zapata PA. Poly(lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Material Science and Engineering C 2015;57:314-20.
  • De Silva RT, Pasbakhsh P, Lee SM, Kit AY. ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science 2015;111:10-20.
  • Battistella E, Varoni E, Cochis A, Palazzo B, Rimondini L. Degradable polymers may improve dental practice. Journal of Applied Biomaterials and Biomechanics 2011;9(3):223-31.
  • Salahuddin N, Abdelwahab M, Gaber M, Elneanaey S. Synthesis and Design of Norfloxacin drug delivery system based on PLA/TiO2 nanocomposites: Antibacterial and antitumor activities. Material Science and Engineering C 2020;108:110337.
  • Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering: C 2020;110:110698.
  • Chen C, He BX, Wang SL, Yuan GP, Zhang L. Unexpected observation of highly thermostable transcrystallinity of poly(lactic acid) induced by aligned carbon nanotubes. European Polymer Journal 2015; 63:177-85.
  • De Silva RT, Pasbakhsh P, Goh KL, Mishnaevsky L. 3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis. Polymer 2014;55:6418-25.
  • Pluta M, Jeszka JK, Boiteux G. Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. European Polymer Journal 2007;43(7):2819-35.
  • Zapata PA, Palza H, Delgado K, Rabagliati FM. Novel antimicrobial polyethylene composites prepared by metallocenic in situ polymerization with TiO2-based nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 2012;50(19):4055-62.
  • Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT - Food Science and Technology 2013;50(2):702-6.
  • Li S, Chen G, Qiang S, Yin Z, Zhang Z, Chen Y. Synthesis and evaluation of highly dispersible and efficient photocatalytic TiO2/poly lactic acid nanocomposite films via sol-gel and casting processes. Internation Journal of Food Microbiology 2020;331:1087663.
  • Baek N, Kim YT, Marcy JE, Duncan SE, O’Keefe SF. Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packaging and Shelf Life 2018;17:30-38.
  • Archana D, Dutta J, Dutta PK. Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. International Journal of Biological Macromolecules 2013;57:193-203.
  • Peng CC, Yang MH, Chiu WT, Chiu CH, Yang CS, Chen YW et al. Composite nano-titanium oxide-chitosan artificial skin exhibits strong wound-healing effect-an approach with anti-inflammatory and bactericidal kinetics. Macromolecular Bioscience 2008;8:316–27.
  • Khalid A, Ullah H, Ul-Islam M, Khan R, Khan S, Ahmad F et al. Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Advances 2017; 75: 47662-8.
  • Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. International Journal of Nanomedicine 2012;7:1215-25.
  • Nakayama N, Hayashi T. Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability 2007;92(7):1255-64.
  • Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X. Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide), Polymer 2007;48(6):1688-94.
  • Luo YB, Wang XL, Xu DY, Wang YZ. Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Applied Surface Science 2009;255(15):6795–6801.
  • Luo YB, Li WD, Wang XL, Xu DY, Wang YZ. Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2, Acta Materialia 2009;57(11):3182-91.
  • Bae GY, Jang J, Jeong YG, Lyoo WS, Min BG. Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups. Journal of Colloid and Interface Science 2010; 344(2):584-7.
  • Athanasoulia IGI, Tarantili PA. Thermal transitions and stability of melt mixed TiO2/Poly(L-lactic acid) nanocomposites. Polymer Engineering Science 2019; 59: 704-13.
  • Nomai J, Suksut B, Schlarb AK. Crystallization Behavior of Poly(lactic acid)/Titanium Dioxide Nanocomposites. KMUTNB International Journal of Applied Science and Technology 2015;8(4):1-8.
  • Buzarovska A. PLA Nanocomposites with Functionalized TiO2 Nanoparticles. Polymer-Plastics Technology and Engineering 2013;52(3):280-6.
  • Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science 2007;32(7):698-725.
  • Wu CY, Tu KJ, Deng JP, Lo YS, Wu CH. Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis. Materials (Basel) 2017; 10(5):566-71.
  • Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 2003; 44:857-66.
  • Wu CS, Liao HT. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 2007;48(15):4449-58.

DOKU MÜHENDİSLİĞİ İÇİN YÜZEYİ MODİFİYE EDİLMİŞ TİTANYUM DİOKSİT/POLİ (LAKTİK ASİT) NANOKOMPOZİT FİLMLER

Year 2022, Volume: 29 Issue: 1, 111 - 120, 01.03.2022
https://doi.org/10.17343/sdutfd.1016353

Abstract

Amaç
Bu çalışmanın amacı, poli(laktik asit) matrisi içerisinde
modifiye edilmemiş ve modifiye edilmiş nanopartiküller
içeren nanokompozit filmleri sentezlemek, karakterize
etmek ve doku mühendisliğinde alternatif bir
yapı iskelesi olarak kullanımlarını araştırmaktır.
Gereç ve Yöntem
İlk olarak, titanyum dioksit (TiO2) nanopartikülleri sırasıyla
L-laktik asit oligomeri (LA-g-TiO2) ve propiyonik
asit/heksilamin (AA-g-TiO2) karışımı ile aşılanmıştır.
Daha sonra, PLA/TiO2, PLA/LA-g-TiO2 ve PLA/AAg-
TiO2 nanokompozit filmleri üretmek için modifiye
edilmemiş ve modifiye edilmiş nanopartiküller solvent
döküm yöntemi ile poli (laktik asit) matrisi içine eklenmiştir.
Sentezlenen bu filmlerin kimyasal, termal ve
mekanik yapıları daha sonra karakterize edilmiştir.
Bulgular
Azaltılmış toplam yansıma (ATR) sonuçları, nanopartiküllerin
yüzey modifikasyonunun başarılı olduğunu
göstermiştir. Diferansiyel tarama kalorimetresi (DSC)
analizinin sonuçları, modifiye edilmiş nanopartiküllerin
dahil edilmesiyle PLA’nın kristalleşmesinin kısmen
arttığını göstermiştir. Termogravimetrik analizin
(TGA) sonuçları, polimer matrisine LA-g-TiO2 eklenmesinin,
PLA/LA-g-TiO2 nanokompozit filmin termal
stabilitesini, polimer matrisine AA-g-TiO2 ilavesinden
daha fazla geliştirdiğini göstermiştir. LA-g-TiO2 içeren
nanokompozitlerin birinci ve ikinci bozunma sıcaklıkları
sırasıyla 348.3 oC ve 392 oC, saf PLA’nınkinden
%6 daha yüksektir. Nanokompozitlerin atomik kuvvet
mikroskobu (AFM) mikrografı, LA-g-TiO2 ve AAg-
TiO2 nanopartiküllerin polimer matrislerde homojen
olarak dağıldığını göstermiştir. Dinamik mekanik analiz
(DMA) sonuçları, diğer nanokompozitlere kıyasla
PLA/LA-g-TiO2 nanokompozitinde en verimli bağlanma
ve uyumluluğun elde edildiğini göstermiştir.
Sonuç
Aşılanmış nanopartiküller, LA-g-TiO2 ve AA-g-TiO2,
matris içindeki homojen dağılımları ve polimerik matris
ile iyi etkileşimleri sayesinde nanokompozitlerin
termal ve mekanik özelliklerini iyileştirmiştir. Bu nedenle,
bu nanokompozitler kemik doku mühendisliğinde
alternatif doku iskeleleri olarak kullanılabilir

Project Number

BAP 06/2012-03

References

  • Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nature Protocols 2016;11(10):1775-81.
  • Ghosal K, Agatemor C, Spitalsky Z, Thomas S, Kny E. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal 2019;358:1262-78.
  • Saber-Samandari S, Yekta H, Ahmadi S, Alamara K. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. International Journal of Biological Macromolecules 2018;106:481-8.
  • Rajeshwari V, Fernando J. Poly paraphenylene diamine/titanium dioxide/exfoliated graphite nanocomposites: Synthesis and characterisation. Materials Today 2021; Proceedings, In press.
  • Lu X, Lv X, Sun Z, Zheng Y. Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. European Polymer Journal 2008;44(8):2476-81.
  • Wang Y, Dai J, Zhang Q, Xiao Y, Lang M. Improved mechanical properties of hydroxyapatite/poly(ε-caprolactone) scaffolds by surface modification of hydroxyapatite. Applied Surface Science 2010;256(20):6107-12.
  • Shebi A, Lisa S. Evaluation of biocompatibility and bactericidal activity of hierarchically porous PLA-TiO2 nanocomposite films fabricated by breath-figure method. Materials Chemistry and Physics 2019;230:308-18.
  • Fonseca C, Ochoa A, Ulloa MT, Alvarez E, Canales D, Zapata PA. Poly(lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Material Science and Engineering C 2015;57:314-20.
  • De Silva RT, Pasbakhsh P, Lee SM, Kit AY. ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science 2015;111:10-20.
  • Battistella E, Varoni E, Cochis A, Palazzo B, Rimondini L. Degradable polymers may improve dental practice. Journal of Applied Biomaterials and Biomechanics 2011;9(3):223-31.
  • Salahuddin N, Abdelwahab M, Gaber M, Elneanaey S. Synthesis and Design of Norfloxacin drug delivery system based on PLA/TiO2 nanocomposites: Antibacterial and antitumor activities. Material Science and Engineering C 2020;108:110337.
  • Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering: C 2020;110:110698.
  • Chen C, He BX, Wang SL, Yuan GP, Zhang L. Unexpected observation of highly thermostable transcrystallinity of poly(lactic acid) induced by aligned carbon nanotubes. European Polymer Journal 2015; 63:177-85.
  • De Silva RT, Pasbakhsh P, Goh KL, Mishnaevsky L. 3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis. Polymer 2014;55:6418-25.
  • Pluta M, Jeszka JK, Boiteux G. Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. European Polymer Journal 2007;43(7):2819-35.
  • Zapata PA, Palza H, Delgado K, Rabagliati FM. Novel antimicrobial polyethylene composites prepared by metallocenic in situ polymerization with TiO2-based nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 2012;50(19):4055-62.
  • Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT - Food Science and Technology 2013;50(2):702-6.
  • Li S, Chen G, Qiang S, Yin Z, Zhang Z, Chen Y. Synthesis and evaluation of highly dispersible and efficient photocatalytic TiO2/poly lactic acid nanocomposite films via sol-gel and casting processes. Internation Journal of Food Microbiology 2020;331:1087663.
  • Baek N, Kim YT, Marcy JE, Duncan SE, O’Keefe SF. Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packaging and Shelf Life 2018;17:30-38.
  • Archana D, Dutta J, Dutta PK. Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. International Journal of Biological Macromolecules 2013;57:193-203.
  • Peng CC, Yang MH, Chiu WT, Chiu CH, Yang CS, Chen YW et al. Composite nano-titanium oxide-chitosan artificial skin exhibits strong wound-healing effect-an approach with anti-inflammatory and bactericidal kinetics. Macromolecular Bioscience 2008;8:316–27.
  • Khalid A, Ullah H, Ul-Islam M, Khan R, Khan S, Ahmad F et al. Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Advances 2017; 75: 47662-8.
  • Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. International Journal of Nanomedicine 2012;7:1215-25.
  • Nakayama N, Hayashi T. Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability 2007;92(7):1255-64.
  • Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X. Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide), Polymer 2007;48(6):1688-94.
  • Luo YB, Wang XL, Xu DY, Wang YZ. Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Applied Surface Science 2009;255(15):6795–6801.
  • Luo YB, Li WD, Wang XL, Xu DY, Wang YZ. Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2, Acta Materialia 2009;57(11):3182-91.
  • Bae GY, Jang J, Jeong YG, Lyoo WS, Min BG. Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups. Journal of Colloid and Interface Science 2010; 344(2):584-7.
  • Athanasoulia IGI, Tarantili PA. Thermal transitions and stability of melt mixed TiO2/Poly(L-lactic acid) nanocomposites. Polymer Engineering Science 2019; 59: 704-13.
  • Nomai J, Suksut B, Schlarb AK. Crystallization Behavior of Poly(lactic acid)/Titanium Dioxide Nanocomposites. KMUTNB International Journal of Applied Science and Technology 2015;8(4):1-8.
  • Buzarovska A. PLA Nanocomposites with Functionalized TiO2 Nanoparticles. Polymer-Plastics Technology and Engineering 2013;52(3):280-6.
  • Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science 2007;32(7):698-725.
  • Wu CY, Tu KJ, Deng JP, Lo YS, Wu CH. Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis. Materials (Basel) 2017; 10(5):566-71.
  • Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 2003; 44:857-66.
  • Wu CS, Liao HT. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 2007;48(15):4449-58.
There are 35 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences, Health Care Administration
Journal Section Research Articles
Authors

Şükran Melda Eskitoros Toğay 0000-0002-7473-8417

Ulya Tokgoz 0000-0003-0592-9663

Project Number BAP 06/2012-03
Publication Date March 1, 2022
Submission Date October 30, 2021
Acceptance Date December 10, 2021
Published in Issue Year 2022 Volume: 29 Issue: 1

Cite

Vancouver Eskitoros Toğay ŞM, Tokgoz U. SURFACE MODIFIED TITANIUM DIOXIDE/POLY (LACTIC ACID) NANOCOMPOSITE FILMS FOR TISSUE ENGINEERING. Med J SDU. 2022;29(1):111-20.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.