Research Article
BibTex RIS Cite

RİFAMPİSİN KAYNAKLI BEYİN DOKUSU HASARINDA LİNALOOL’UN İYİLEŞTİRİCİ RÖLÜ

Year 2023, Volume: 30 Issue: 3, 362 - 370, 23.09.2023
https://doi.org/10.17343/sdutfd.1282668

Abstract

Objective
In this study linalool (LN), which has antihyperglycemic,
hypolipidemic and antioxidant properties, is intended
to be used in the treatment of neurodegenerations
and neural disorders that may occur due to rifampicin
(RF). For this reason, it was aimed to examine the
effects of LN on the expression of genes, biochemical
and histopathological parameters in these metabolic
pathways against neurotoxicity that may occur due
to RF, and to investigate the protective effects of LN,
which has antioxidant properties.
Material and Method
Thirty healthy male Spraque-Dawley rats were divided
into five groups (group 1; control, group 2; solvent
control (DMSO); group 3, RF; group 4, LN; group 5;
RF+LN). Brain tissues were taken for biochemical,
histological and gene expressions analyses. Blood
samples were taken to measure blood glucose levels.
Results
Rifampicin treatment significantly increased CYP1A1
and CYP1A2 mRNA gene expression and blood
glucose levels, while reducing brain weight according
to findings. On the other hand, there was a significant
decrease in CYP1A1 and CYP1A2 mRNA gene
expression and blood glucose levels in the RF+LN
group, while a significant improvement in brain weight
was observed and as a result of histological analyzes,
it was observed that the damage caused by RF
decreased in the groups given LN.
Conclusion
LN was found to be highly effective in protecting the
brain from the toxic effects of RF.

References

  • 1. Chiba S, Tsuchiya K, Sakashita H, Ito E, Inase N. Rifampicin-induced acute kidney injury during the initial treatment for pulmonary tuberculosis: a case report and literature review. Internal medicine. 2013;52(21):2457-60.
  • 2. Leppert D, Waespe W. Neurotoxicity of antituberculous drugs in a patient without active tuberculosis. Italian journal of neurological sciences. 1988 Feb;9(1):31-4.
  • 3. Snavely SR, Hodges GR. The neurotoxicity of antibacterial agents. Annals of internal medicine. 1984 Jul;101(1):92-104.
  • 4. Hiratsuka M. In vitro assessment of the allelic variants of cytochrome P450. Drug metabolism and pharmacokinetics. 2012;27(1):68-84.
  • 5. Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends in pharmacological sciences. 2011 Dec;32(12):708-14.
  • 6. Liu M, Hurn PD, Alkayed NJ. Cytochrome P450 in neurological disease. Current drug metabolism. 2004 Jun;5(3):225-34.
  • 7. Rysz M, Bromek E, Haduch A, Sadakierska-Chudy A, Daniel WA. Damage to the Brain Serotonergic System Increases the Expression of Liver Cytochrome P450. Drug metabolism and disposition: the biological fate of chemicals. 2015 Sep;43(9):1345-52.
  • 8. Kim JH, Stansbury KH, Walker NJ, Trush MA, Strickland PT, Sutter TR. Metabolism of benzo[a]pyrene and benzo[a]pyrene- 7,8-diol by human cytochrome P450 1B1. Carcinogenesis. 1998 Oct;19(10):1847-53.
  • 9. Ioannides C, Lewis DF. Cytochromes P450 in the bioactivation of chemicals. Current topics in medicinal chemistry. 2004;4(16):1767-88.
  • 10. Muller AP, Haas CB, Camacho-Pereira J, Brochier AW, Gnoatto J, Zimmer ER, et al. Insulin prevents mitochondrial generation of H₂O₂ in rat brain. Experimental neurology. 2013 Sep;247:66-72.
  • 11. Wright E, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. International journal of clinical practice. 2006 Mar;60(3):308-14.
  • 12. Yang H, Jin X, Kei Lam CW, Yan SK. Oxidative stress and diabetes mellitus. Clinical chemistry and laboratory medicine. 2011 Nov;49(11):1773-82.
  • 13. Cheng YC, Chu LW, Chen JY, Hsieh SL, Chang YC, Dai ZK, Wu BN. Loganin Attenuates High Glucose-Induced Schwann Cells Pyroptosis by Inhibiting ROS Generation and NLRP3 Inflammasome Activation. Cells. 2020 Aug 23;9(9):1948. doi: 10.3390/cells9091948.
  • 14. Rizwan H, Pal S, Sabnam S, Pal A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life sciences.2020;241:117148.
  • 15. Ahmad KA, Yuan Yuan D, Nawaz W, Ze H, Zhuo CX, Talal B, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free radical research. 2017 Apr;51(4):428-38.
  • 16. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry. 2015 Jun 5;97:55-74.
  • 17. Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012 Mar 5;17(3):2704-13.
  • 18. Park H, Seol GH, Ryu S, Choi IY. Neuroprotective effects of (-)-linalool against oxygen-glucose deprivation-induced neuronal injury. Archives of pharmacal research. 2016;39(4):555-64.
  • 19. Hussain T, Subaiea GM, Firdous H. Hepatoprotective Evaluation of Trapa natans against Drug-induced Hepatotoxicity of Antitubercular Agents in Rats. Pharmacognosy magazine. 2018 Apr-Jun;14(54):180-5.
  • 20. Altinoz E, Oner Z, Elbe H, Uremis N, Uremis M. Linalool exhibits therapeutic and protective effects in a rat model of doxorubicin-induced kidney injury by modulating oxidative stress. Drug Chem Toxicol. 2022 Sep;45(5):2024-2030. doi: 10.1080/01480545.2021.1894751.
  • 21. Karlson AG, Ulrich JA. Stability of rifampin in dimethylsulfoxide. Applied microbiology. 1969 Oct;18(4):692-3.
  • 22. Oh CT, Moon C, Choi TH, Kim BS, Jang J. Mycobacterium marinum infection in Drosophila melanogaster for antimycobacterial activity assessment. The Journal of antimicrobial chemotherapy. 2013 Mar;68(3):601-9.
  • 23. Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC molecular biology. 2008 May 28;9:53.
  • 24. Aydın G, Adaleti R, Boz ES, Yücel FM, Özhan HK, Aksaray S. Investigation of Anti-HCV S/CO Value in Detecting Viremia in Patients with Hepatitis C Virus Infection. Mikrobiyoloji bulteni. 2020 Jan;54(1):110-9.
  • 25. Kitamura R, Matsuoka K, Nagayama S, Otagiri M. Time-dependent induction of rat hepatic CYP1A1 and CYP1A2 expression after single-dose administration of the anti-angiogenic agent TSU-68. Drug metabolism and pharmacokinetics. 2008;23(6):421-7.
  • 26. Refaiy A, Muhammad E, ElGanainy EO. Semiquantitative smoothelin expression in detection of muscle invasion in transurethral resection and cystectomy specimens in cases of urinary bladder carcinoma. African Journal of Urology. 2011 2011/03/01;17(1):6-10.
  • 27. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Veterinary pathology. 2013 Nov;50(6):1007-15.
  • 28. Strobel H, Thompson C, Antonovic L. Cytochromes P450 in brain: function and significance. Current drug metabolism. 2001;2(2):199-214.
  • 29. Morse DC, Stein AP, Thomas PE, Lowndes HE. Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicology and applied pharmacology. 1998 Sep;152(1):232-9.
  • 30. Singh AK, Kashyap MP, Jahan S, Kumar V, Tripathi VK, Siddiqui MA, et al. Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34(+) stem cell-derived differentiating neuronal cells. Toxicological sciences. 2012 Oct;129(2):392-410.
  • 31. Maciejczyk M, Żebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What's New? Int J Mol Sci. 2019 Feb 18;20(4):874. doi: 10.3390/ijms20040874.
  • 32. Li X, He X, Chen S, Le Y, Bryant MS, Guo L, et al. The genotoxicity potential of luteolin is enhanced by CYP1A1 and CYP1A2 in human lymphoblastoid TK6 cells. Toxicology letters. 2021 Jun 15;344:58-68.
  • 33. Pyo MC, Shin HS, Jeon GY, Lee KW. Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biological & pharmaceutical bulletin. 2020;43(9):1346-55.
  • 34. Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug metabolism and pharmacokinetics. 2006;21(4):257-76.
  • 35. Tsuji G, Takahara M, Uchi H, Takeuchi S, Mitoma C, Moroi Y, et al. An environmental contaminant, benzo (a) pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. Journal of dermatological science. 2011;62(1):42-9.
  • 36. Bartsch H, Rojas M, Alexandrov K, Camus AM, Castegnaro M, Malaveille C, et al. Metabolic polymorphism affecting DNA binding and excretion of carcinogens in humans. Pharmacogenetics. 1995;5:84-90.
  • 37. Awodele O, Akintonwa A, Osunkalu VO, Coker HA. Modulatory activity of antioxidants against the toxicity of Rifampicin in vivo. Revista do Instituto de Medicina Tropical de Sao Paulo. 2010 Jan-Feb;52(1):43-6.
  • 38. Malaplate-Armand C, Leininger-Muller B, Batt AM. Astrocytic cytochromes p450: an enzyme subfamily critical for brain metabolism and neuroprotection. Revue neurologique. 2004 Jul;160(6-7):651-8.
  • 39. Khalil HE, Ibrahim HM, Darrag HM, Matsunami K. Insight into Analysis of Essential Oil from Anisosciadium lanatum Boiss.-Chemical Composition, Molecular Docking, and Mitigation of Hepg2 Cancer Cells through Apoptotic Markers. Plants. 2021 Dec 26;11(1):66. doi: 10.3390/plants11010066.
  • 40. Caputo L, Piccialli I, Ciccone R, de Caprariis P, Massa A, De Feo V, Pannaccione A. Lavender and coriander essential oils and their main component linalool exert a protective effect against amyloid-β neurotoxicity. Phytother Res. 2021 Jan;35(1):486-493. doi: 10.1002/ptr.6827.
  • 41. Jeong K, Shin YC, Park S, Park JS, Kim N, Um JY, et al. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice. Journal of biomedical science. 2011 Feb 8;18(1):14.
  • 42. Gómez-Apo E, Silva-Pereyra J, Soto-Abraham V, Mondragón- Maya A, Sanchez-Lopez J. Immunohistochemical analysis of caspase expression in the brains of individuals with obesity or overweight. Obesity science & practice. 2023 Apr;9(2):137- 44.
  • 43. Yeh SH, Huang WS, Chiu CH, Chen CL, Chen HT, Chi DY, et al. Automated Synthesis and Initial Evaluation of (4'-Amino-5',8'-difluoro-1'H-spiro[piperidine-4,2'-quinazolin]-1-yl)(4-[(18)F]fluorophenyl) methanone for PET/MR Imaging of Inducible Nitric Oxide Synthase. Molecular imaging. 2021;2021:9996125.
  • 44. Çelik R, Mert H, Comba B, Mert N. Effects of cinnamaldehyde on glucose-6-phosphate dehydrogenase activity, some biochemical and hematological parameters in diabetic rats. Biomarkers. 2022 May;27(3):270-7.
  • 45. Scheen AJ. Central nervous system: a conductor orchestrating metabolic regulations harmed by both hyperglycaemia and hypoglycaemia. Diabetes & metabolism. 2010 Oct;36 Suppl 3:S31-8.
  • 46. Rysä J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clinical pharmacology and therapeutics. 2013 Jun;93(6):556-63.
  • 47. Perry W. Rifampicin, halothane and glucose as mediators of lysosomal enzyme release and tissue damage. Medical hypotheses. 1988 Jun;26(2):131-4.
  • 48. Deepa B, Venkatraman Anuradha C. Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicology mechanisms and methods. 2013 May;23(4):223-34.
  • 49. Yang CM, Lin CC, Hsieh HL. High-Glucose-Derived Oxidative Stress-Dependent Heme Oxygenase-1 Expression from Astrocytes Contributes to the Neuronal Apoptosis. Molecular neurobiology. 2017 Jan;54(1):470-83.
  • 50. Niemi M, Kivistö KT, Backman JT, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of glimepiride. British journal of clinical pharmacology. 2000 Dec;50(6):591-5.

THE CURATIVE ROLE OF LINALOOL IN RIFAMPICIN-INDUCED BRAIN TISSUE DAMAGE

Year 2023, Volume: 30 Issue: 3, 362 - 370, 23.09.2023
https://doi.org/10.17343/sdutfd.1282668

Abstract

Amaç
Bu çalışmada antihiperglisemik, hipolipidemik ve antioksidan
özelliklere sahip olan linalool (LN), rifampisine
(RF) bağlı olarak oluşabilen nörodejenerasyonlar
ve nöral bozuklukların tedavisi amacıyla kullanılmıştır.
Bu amaçla, RF'ye bağlı oluşabilecek nörotoksisitede,
antioksidan özelliği olan LN'nin koruyucu etkinliği hem
gen ekspresyonu seviyesinde hem de biyokimyasal
ve histopatolojik bulgularla araştırılmıştır.
Gereç ve Yöntem
30 adet sağlıklı erkek Spraque-Dawley rat beş gruba
ayrıldı (Grup 1: Kontrol grubu; Grup 2: Çözücü Kontrol
(Dimetilsülfoksit-DMSO) grubu; Grup 3: Rifampisin
(RF) grubu; Grup 4: Linalool (LN) grubu; Grup 5:
Rifampisin-Linalool (RF+LN) grubu. Biyokimyasal ve
histolojik analizler ile gen ekspresyon seviyeleri için
beyin dokuları, kan glikoz seviyelerini ölçmek için kan
örnekleri alındı.
Bulgular
Rifampisin uygulaması, beyin ağırlığını azaltırken,
CYP1A1 ve CYP1A2 mRNA gen ekspresyonunu ve
kan glukoz düzeylerini önemli ölçüde artırmıştır. Diğer
yandan RF+LN grubunda CYP1A1 ve CYP1A2 mRNA
gen ekspresyonu ve kan glukoz düzeylerinde anlamlı
azalmalar olurken, beyin ağırlığında anlamlı düzelme
gözlenmiştir. Histolojik bulgular LN verilen gruplarda,
RF ye bağlı oluşan hasarların azaldığını göstermiştir.
Sonuç
LN'nin beyin dokusunu RF'nin toksik etkilerinden korumada
oldukça etkili olduğu tespit edilmiştir.

References

  • 1. Chiba S, Tsuchiya K, Sakashita H, Ito E, Inase N. Rifampicin-induced acute kidney injury during the initial treatment for pulmonary tuberculosis: a case report and literature review. Internal medicine. 2013;52(21):2457-60.
  • 2. Leppert D, Waespe W. Neurotoxicity of antituberculous drugs in a patient without active tuberculosis. Italian journal of neurological sciences. 1988 Feb;9(1):31-4.
  • 3. Snavely SR, Hodges GR. The neurotoxicity of antibacterial agents. Annals of internal medicine. 1984 Jul;101(1):92-104.
  • 4. Hiratsuka M. In vitro assessment of the allelic variants of cytochrome P450. Drug metabolism and pharmacokinetics. 2012;27(1):68-84.
  • 5. Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends in pharmacological sciences. 2011 Dec;32(12):708-14.
  • 6. Liu M, Hurn PD, Alkayed NJ. Cytochrome P450 in neurological disease. Current drug metabolism. 2004 Jun;5(3):225-34.
  • 7. Rysz M, Bromek E, Haduch A, Sadakierska-Chudy A, Daniel WA. Damage to the Brain Serotonergic System Increases the Expression of Liver Cytochrome P450. Drug metabolism and disposition: the biological fate of chemicals. 2015 Sep;43(9):1345-52.
  • 8. Kim JH, Stansbury KH, Walker NJ, Trush MA, Strickland PT, Sutter TR. Metabolism of benzo[a]pyrene and benzo[a]pyrene- 7,8-diol by human cytochrome P450 1B1. Carcinogenesis. 1998 Oct;19(10):1847-53.
  • 9. Ioannides C, Lewis DF. Cytochromes P450 in the bioactivation of chemicals. Current topics in medicinal chemistry. 2004;4(16):1767-88.
  • 10. Muller AP, Haas CB, Camacho-Pereira J, Brochier AW, Gnoatto J, Zimmer ER, et al. Insulin prevents mitochondrial generation of H₂O₂ in rat brain. Experimental neurology. 2013 Sep;247:66-72.
  • 11. Wright E, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. International journal of clinical practice. 2006 Mar;60(3):308-14.
  • 12. Yang H, Jin X, Kei Lam CW, Yan SK. Oxidative stress and diabetes mellitus. Clinical chemistry and laboratory medicine. 2011 Nov;49(11):1773-82.
  • 13. Cheng YC, Chu LW, Chen JY, Hsieh SL, Chang YC, Dai ZK, Wu BN. Loganin Attenuates High Glucose-Induced Schwann Cells Pyroptosis by Inhibiting ROS Generation and NLRP3 Inflammasome Activation. Cells. 2020 Aug 23;9(9):1948. doi: 10.3390/cells9091948.
  • 14. Rizwan H, Pal S, Sabnam S, Pal A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life sciences.2020;241:117148.
  • 15. Ahmad KA, Yuan Yuan D, Nawaz W, Ze H, Zhuo CX, Talal B, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free radical research. 2017 Apr;51(4):428-38.
  • 16. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry. 2015 Jun 5;97:55-74.
  • 17. Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012 Mar 5;17(3):2704-13.
  • 18. Park H, Seol GH, Ryu S, Choi IY. Neuroprotective effects of (-)-linalool against oxygen-glucose deprivation-induced neuronal injury. Archives of pharmacal research. 2016;39(4):555-64.
  • 19. Hussain T, Subaiea GM, Firdous H. Hepatoprotective Evaluation of Trapa natans against Drug-induced Hepatotoxicity of Antitubercular Agents in Rats. Pharmacognosy magazine. 2018 Apr-Jun;14(54):180-5.
  • 20. Altinoz E, Oner Z, Elbe H, Uremis N, Uremis M. Linalool exhibits therapeutic and protective effects in a rat model of doxorubicin-induced kidney injury by modulating oxidative stress. Drug Chem Toxicol. 2022 Sep;45(5):2024-2030. doi: 10.1080/01480545.2021.1894751.
  • 21. Karlson AG, Ulrich JA. Stability of rifampin in dimethylsulfoxide. Applied microbiology. 1969 Oct;18(4):692-3.
  • 22. Oh CT, Moon C, Choi TH, Kim BS, Jang J. Mycobacterium marinum infection in Drosophila melanogaster for antimycobacterial activity assessment. The Journal of antimicrobial chemotherapy. 2013 Mar;68(3):601-9.
  • 23. Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC molecular biology. 2008 May 28;9:53.
  • 24. Aydın G, Adaleti R, Boz ES, Yücel FM, Özhan HK, Aksaray S. Investigation of Anti-HCV S/CO Value in Detecting Viremia in Patients with Hepatitis C Virus Infection. Mikrobiyoloji bulteni. 2020 Jan;54(1):110-9.
  • 25. Kitamura R, Matsuoka K, Nagayama S, Otagiri M. Time-dependent induction of rat hepatic CYP1A1 and CYP1A2 expression after single-dose administration of the anti-angiogenic agent TSU-68. Drug metabolism and pharmacokinetics. 2008;23(6):421-7.
  • 26. Refaiy A, Muhammad E, ElGanainy EO. Semiquantitative smoothelin expression in detection of muscle invasion in transurethral resection and cystectomy specimens in cases of urinary bladder carcinoma. African Journal of Urology. 2011 2011/03/01;17(1):6-10.
  • 27. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Veterinary pathology. 2013 Nov;50(6):1007-15.
  • 28. Strobel H, Thompson C, Antonovic L. Cytochromes P450 in brain: function and significance. Current drug metabolism. 2001;2(2):199-214.
  • 29. Morse DC, Stein AP, Thomas PE, Lowndes HE. Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicology and applied pharmacology. 1998 Sep;152(1):232-9.
  • 30. Singh AK, Kashyap MP, Jahan S, Kumar V, Tripathi VK, Siddiqui MA, et al. Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34(+) stem cell-derived differentiating neuronal cells. Toxicological sciences. 2012 Oct;129(2):392-410.
  • 31. Maciejczyk M, Żebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What's New? Int J Mol Sci. 2019 Feb 18;20(4):874. doi: 10.3390/ijms20040874.
  • 32. Li X, He X, Chen S, Le Y, Bryant MS, Guo L, et al. The genotoxicity potential of luteolin is enhanced by CYP1A1 and CYP1A2 in human lymphoblastoid TK6 cells. Toxicology letters. 2021 Jun 15;344:58-68.
  • 33. Pyo MC, Shin HS, Jeon GY, Lee KW. Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biological & pharmaceutical bulletin. 2020;43(9):1346-55.
  • 34. Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug metabolism and pharmacokinetics. 2006;21(4):257-76.
  • 35. Tsuji G, Takahara M, Uchi H, Takeuchi S, Mitoma C, Moroi Y, et al. An environmental contaminant, benzo (a) pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. Journal of dermatological science. 2011;62(1):42-9.
  • 36. Bartsch H, Rojas M, Alexandrov K, Camus AM, Castegnaro M, Malaveille C, et al. Metabolic polymorphism affecting DNA binding and excretion of carcinogens in humans. Pharmacogenetics. 1995;5:84-90.
  • 37. Awodele O, Akintonwa A, Osunkalu VO, Coker HA. Modulatory activity of antioxidants against the toxicity of Rifampicin in vivo. Revista do Instituto de Medicina Tropical de Sao Paulo. 2010 Jan-Feb;52(1):43-6.
  • 38. Malaplate-Armand C, Leininger-Muller B, Batt AM. Astrocytic cytochromes p450: an enzyme subfamily critical for brain metabolism and neuroprotection. Revue neurologique. 2004 Jul;160(6-7):651-8.
  • 39. Khalil HE, Ibrahim HM, Darrag HM, Matsunami K. Insight into Analysis of Essential Oil from Anisosciadium lanatum Boiss.-Chemical Composition, Molecular Docking, and Mitigation of Hepg2 Cancer Cells through Apoptotic Markers. Plants. 2021 Dec 26;11(1):66. doi: 10.3390/plants11010066.
  • 40. Caputo L, Piccialli I, Ciccone R, de Caprariis P, Massa A, De Feo V, Pannaccione A. Lavender and coriander essential oils and their main component linalool exert a protective effect against amyloid-β neurotoxicity. Phytother Res. 2021 Jan;35(1):486-493. doi: 10.1002/ptr.6827.
  • 41. Jeong K, Shin YC, Park S, Park JS, Kim N, Um JY, et al. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice. Journal of biomedical science. 2011 Feb 8;18(1):14.
  • 42. Gómez-Apo E, Silva-Pereyra J, Soto-Abraham V, Mondragón- Maya A, Sanchez-Lopez J. Immunohistochemical analysis of caspase expression in the brains of individuals with obesity or overweight. Obesity science & practice. 2023 Apr;9(2):137- 44.
  • 43. Yeh SH, Huang WS, Chiu CH, Chen CL, Chen HT, Chi DY, et al. Automated Synthesis and Initial Evaluation of (4'-Amino-5',8'-difluoro-1'H-spiro[piperidine-4,2'-quinazolin]-1-yl)(4-[(18)F]fluorophenyl) methanone for PET/MR Imaging of Inducible Nitric Oxide Synthase. Molecular imaging. 2021;2021:9996125.
  • 44. Çelik R, Mert H, Comba B, Mert N. Effects of cinnamaldehyde on glucose-6-phosphate dehydrogenase activity, some biochemical and hematological parameters in diabetic rats. Biomarkers. 2022 May;27(3):270-7.
  • 45. Scheen AJ. Central nervous system: a conductor orchestrating metabolic regulations harmed by both hyperglycaemia and hypoglycaemia. Diabetes & metabolism. 2010 Oct;36 Suppl 3:S31-8.
  • 46. Rysä J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clinical pharmacology and therapeutics. 2013 Jun;93(6):556-63.
  • 47. Perry W. Rifampicin, halothane and glucose as mediators of lysosomal enzyme release and tissue damage. Medical hypotheses. 1988 Jun;26(2):131-4.
  • 48. Deepa B, Venkatraman Anuradha C. Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicology mechanisms and methods. 2013 May;23(4):223-34.
  • 49. Yang CM, Lin CC, Hsieh HL. High-Glucose-Derived Oxidative Stress-Dependent Heme Oxygenase-1 Expression from Astrocytes Contributes to the Neuronal Apoptosis. Molecular neurobiology. 2017 Jan;54(1):470-83.
  • 50. Niemi M, Kivistö KT, Backman JT, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of glimepiride. British journal of clinical pharmacology. 2000 Dec;50(6):591-5.
There are 50 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Araştırma Makaleleri
Authors

Meltem Özgöçmen 0000-0003-3190-4486

Sebile Azırak 0000-0001-9040-6773

Publication Date September 23, 2023
Submission Date April 13, 2023
Acceptance Date May 30, 2023
Published in Issue Year 2023 Volume: 30 Issue: 3

Cite

Vancouver Özgöçmen M, Azırak S. RİFAMPİSİN KAYNAKLI BEYİN DOKUSU HASARINDA LİNALOOL’UN İYİLEŞTİRİCİ RÖLÜ. Med J SDU. 2023;30(3):362-70.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.