Conference Paper
BibTex RIS Cite

Determination of transpiration rate using stable isotope mixing model in different irrigation regimes for winter wheat

Year 2018, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 62 - 72, 31.12.2018

Abstract

The main goal of this research was to partition evapotranspiration (ET) into evaporation (E) and transpiration (T) components for determining transpiration rate of wheat using by oxygen isotope discrimination. Field experiment was conducted between the year 2009 and 2011 under Rainfed (So) and Full irrigation (S1) conditions on 5 hectares plots in Ankara-Murted Basin. Soil-water-plant samples was taken during growing period for isotopic (18O/16O) analyses. Keeling plot methods were used to determine transpiration (FT %) and evaporation (FE %) rate from atmospheric vapor (δET), soil (δE) and plant stem (δT) isotopic δ18O content. According to research results; two years average of T/ET was found for S0 treatment 50.80, 69.09 and 79.87% and for S1 treatment 53.24, 75.82 and 95.13% at 1-15-29 May respectively. This study has indicated that stable isotopes can be used to protect limited water resources and to promote sustainable use.

References

  • Allen, R.G., Pereira L.S., Raes D., S.M., 1998. Crop evapotranspiration : Guidelines for computing crop water requirements, in: FAO Irrigation and Drainage Paper No.56. pp. 17–27.
  • Altın, T.B., Barak, B., Altın, B. N., 2012. Change in Precipitation and Temperature Amounts over Three Decades in Central Anatolia, Turkey. Atmospheric and Climate Sciences. 2(1), 19-23.
  • Brunel, J.P., Walker, G.R., Dighton, J.C., Monteny, B., 1997. Use of stable isotopes of water to determine the origin of water used by the vegetation and to partition evapotranspiration. A case study from HAPEX-Sahel. J. Hydrol. 188–189, 466–481.
  • Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations the ocean and the marine atmosphere. Stable Isot. Oceanogr. Stud. Paleotemp. 9–130.
  • Ehleringer, J.R., Buchmann, N., Flanagan, L.B., 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl. 10, 412–422.
  • Ferretti, D.F., Pendall, E., Morgan, J.A., Nelson, J.A., LeCain, D., Mosier, A.R., 2003. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: seasonal variations and ecosystem implications of elevated atmospheric CO2. Plant Soil 254, 291–303.
  • Flanagan, L.B., Comstock, J.P., Ehieringer, J.R., 1991. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in phaseolus vulgaris L. Plant Physiol 96, 588–596.
  • Gokalp, Z., Cakmak, B. 2016. Agrıcultural water management in Turkey: Past-present-future. Current Trends in Natural Sciences. 5(9), 133-138.
  • Heng, L.K., Hsiao T.C., Williams D., Fereres E., Cepuder P., Denmead T., Amenzou N., Dhan N., Duong H., Kale S., Li B.G, Mahmood K., Mei X.R., Phiri E., Z.S. and N.M.., 2014. Managing irrigation water to enhance crop productivity under water-limiting conditions: A role for isotopic techniques. Intern. Symp. on Man. Soils for Food Sec. and Clim. Chan. Adap. and Mitig. pp. 323–329.
  • Hu, Z., Wen, X., Sun, X., Li, L., Yu, G., Lee, X., Li, S., 2014. Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland. J. Geophys. Res. Biogeosciences 358–371.
  • Jackson, R.B., O.E. Sala, J.M. Paruelo, and H.A.M., 1998. Ecosystem water fluxes for two grasslands in elevated CO2: a modeling analysis. Oecologia 113, 537–546.
  • Jensen, M.E., Burman, R.D., Allen R.G., 1990. Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Engineering Practice. Am. Soc. Civ. Eng. 70, 332.
  • Keeling C.D, 1961. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 24, 277–298.
  • Liu, C., Zhang, X., Zhang, Y., 2002. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric. For. Meteorol. 111, 109–120.
  • Majoube, M., 1971. Fractionation of oxygen-18 and deuterium between water and its vapor. J. Chim. Phys. 197.
  • Meyers, T.P., 2001. A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agric. For. Meteorol. 106, 205–214.
  • Moncrieff, J.B., Jarvis, P.G., Valentini, R., 2000. Methods in ecosystem science. Springer, New York 407.
  • Monteith, J.L., Unsworth, M.H., 2013. Principles of environmental physics plants, animals and the atmosphere, Fourth. ed., pp:300.
  • Moreira, M. Z., Sternberg, L.S., Martinelli, L, Reynaldo, L.V, Barbosa, E., Bonates, L., Nepstad, D., 1997. Contribution of transpiration to forest ambient vapour based on isotopic measurements. Glob. Chang. Biol. 3, 439–450.
  • Paruelo, J.M., Sala, O., 1995. Water losses in the Patagonian steppe: A modeling approach. Ecology 76, 510–520.
  • Reynolds, J.F., Kemp, P.R., Tenhunen, J.D., 2000. Effects of long-term variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecol 150, 145–159.
  • Rothfuss, Y., Biron, P., Braud, I., Canale, L., Durand, J.L., Gaudet, J.P., Richard, P., Vauclin, M., Bariac, T., 2010. Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrol. Process 24, 3177–3194.
  • Oweis T, Ilbeyi A (2001). Supplemental irrigation potential for wheat in the Central Anatolian plateau. International central for agricultural research and dry areas ICARDA report. 103: 78-87.
  • Shang, S., Li, X., Mao, X., Lei, Z., 2004. Simulation of water dynamics and irrigation scheduling for winter wheat and maize in seasonal frost areas. Agric. Water Manag. 68, 117–133.
  • Shichun, Z., Xuefa, W., Jianlin, W., Guirui, Y., Xiaomin, S., 2010. The use of stable isotopes to partition evapotranspiration fluxes into evaporation and transpiration. Acta Ecol. Sin. 30, 201–209.
  • Sun, S., Meng, P., Zhang, J., Wan, X., Zheng, N., He, C., 2014. Partitioning oak woodland evapotranspiration in the rocky mountainous area of North China was disturbed by foreign vapor, as estimated based on non-steady-state 18O isotopic composition. Agric. For. Meteorol. 184, 36–47.
  • Tan, Q., Zhang, S., Li, L., 2017. Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water. 9, 488.
  • TUIK, 2016. Türkiye İstatistik Kurumu. Bitki Üretim verileri.
  • Wang, X.F., Yakir D., 1995. Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species. Plant Cell Environ. 18, 1377–1385.
  • Wang, X.F., Yakir, D., 2000. Using stable isotopes of water in evapotranspiration studies. Hydrol. Process. 14, 1407–1421.
  • Wang L., D’Odorico, P., Evans, J.P., Eldridge, D.J., McCabe, M. F.,. Caylor, K. K and King E. G. 2012. Dryland ecohydrology and climate change: critical issues and technical advances Hydrol. Earth Syst. Sci., 16, 2585–2603.
  • Wang, X.M., Liu, H.J., Zhang, L.W., Zhang, R.H., 2014. Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District. Water Sci. Eng. 7, 250–266.
  • Williams, D.G., Cable, W., Hultine, K., Hoedjes, J.C.B., Yepez, E.A., Simonneaux, V., Er-Raki, S., Boulet, G., De Bruin, H.A.R., Chehbouni, A., Hartogensis, O.K., Timouk, F., 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 125, 241–258.
  • Wilson, K.B., Carlsoni, T.N., Bunce, J., 1999. Feedback significantly influences the simulated effect of CO2 on seasonal evapotranspiration from two agricultural species. Glob. Chang. Biol. 5, 903–917.
  • Xu, Z., Yang, H., Liu, F., An, S., Cui, J., Wang, Z., Liu, S., 2008. Partitioning evapotranspiration flux components in a subalpine shrubland based on stable isotopic measurements. Bot. Stud. 49, 351–361.
  • Yakir, D., Sternberg, L.S., 2000. The use of stable isotope to study ecosystem gas exchange. Oecologia 123, 297–311.
  • Yang, Y., Scott, R.L., Shang, S., 2013. Modeling evapotranspiration and its partitioning over a semiarid shrub ecosystem from satellite imagery: a multiple validation. J. Appl. Sci. 7, 1–15.
  • Yepez, E.A., Williams, D.G., Scott, R.L., Lin, G., 2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric. For. Meteorol. 119, 53–68.
  • Yuan, G.F., Zhang, N., Sun, X.M., Wen, X.F., Zhang, S.C., 2010. Partitioning wheat field evapotranspiration using Keeling plot method and continuous atmospheric vapor δ18O data. Chinies J. Plant Ecol. 34, 170–178.
  • Zhang, Y., Shen, Y., Sun, H., Gates, J.B., 2011. Evapotranspiration and its partitioning in an irrigated winter wheat field: A combined isotopic and micrometeorologic approach. J. Hydrol. 408, 203–211.
  • Zhou, L., Hoekstra, A.Y., 2017. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Front. Agr. Sci. Eng. 4(2): 185–194

Buğdayda Farklı Sulama Koşulları Altında Kararlı İzotop Karşılaştırma Metodu Kullanılarak Bitki Su Kullanım (Transpirasyon) Oranının Belirlenmesi

Year 2018, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 62 - 72, 31.12.2018

Abstract

Bu araştırmanın temel
amacı, buğdayın transpirasyon oranını belirlemek için oksijen izotop ayrım
oranını kullanarak evapotranspirasyonu (ET), topraktan buharlaşma (E) ve
transpirasyon (T) bileşeni olarak ayırmaktır. Ankara-Mürted Havzasında
2009-2011 yılları arasında, 5 hektarlık büyük parsellerde sulama yapılmayan (yağışa
dayalı; S0) ve tam sulama (S1) konularında arazi denemesi
yürütülmüştür. İzotopik (18O/16O) analizlerin yapılması
için 1-15-29 Mayıs tarihlerinde toprak-su-bitki örnekleri alınmıştır. Atmosferik
su buharı (δET), toprak (δE) ve bitki sapı (δT)
izotopik δ18O içeriğinden, transpirasyon
(FT %) ve
buharlaşma
(FE
%)
oranını belirlemek için Keeling plot yöntemi kullanılmıştır.
Araştırma sonuçlarına göre; iki yıllık ortalama transpirasyon oranı, 1-15-29
Mayıs tarihlerinde S0 konuda %50.80, 69.09 ve 79.87,  S1 konusunda ise %53.24, 75.82 ve 95.13
olarak bulunmuştur. Bu çalışma kararlı izotopların sınırlı su kaynaklarını
korumak ve sürdürülebilir kullanımını desteklemek amacıyla kullanılabileceğini
göstermiştir.

References

  • Allen, R.G., Pereira L.S., Raes D., S.M., 1998. Crop evapotranspiration : Guidelines for computing crop water requirements, in: FAO Irrigation and Drainage Paper No.56. pp. 17–27.
  • Altın, T.B., Barak, B., Altın, B. N., 2012. Change in Precipitation and Temperature Amounts over Three Decades in Central Anatolia, Turkey. Atmospheric and Climate Sciences. 2(1), 19-23.
  • Brunel, J.P., Walker, G.R., Dighton, J.C., Monteny, B., 1997. Use of stable isotopes of water to determine the origin of water used by the vegetation and to partition evapotranspiration. A case study from HAPEX-Sahel. J. Hydrol. 188–189, 466–481.
  • Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations the ocean and the marine atmosphere. Stable Isot. Oceanogr. Stud. Paleotemp. 9–130.
  • Ehleringer, J.R., Buchmann, N., Flanagan, L.B., 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl. 10, 412–422.
  • Ferretti, D.F., Pendall, E., Morgan, J.A., Nelson, J.A., LeCain, D., Mosier, A.R., 2003. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: seasonal variations and ecosystem implications of elevated atmospheric CO2. Plant Soil 254, 291–303.
  • Flanagan, L.B., Comstock, J.P., Ehieringer, J.R., 1991. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in phaseolus vulgaris L. Plant Physiol 96, 588–596.
  • Gokalp, Z., Cakmak, B. 2016. Agrıcultural water management in Turkey: Past-present-future. Current Trends in Natural Sciences. 5(9), 133-138.
  • Heng, L.K., Hsiao T.C., Williams D., Fereres E., Cepuder P., Denmead T., Amenzou N., Dhan N., Duong H., Kale S., Li B.G, Mahmood K., Mei X.R., Phiri E., Z.S. and N.M.., 2014. Managing irrigation water to enhance crop productivity under water-limiting conditions: A role for isotopic techniques. Intern. Symp. on Man. Soils for Food Sec. and Clim. Chan. Adap. and Mitig. pp. 323–329.
  • Hu, Z., Wen, X., Sun, X., Li, L., Yu, G., Lee, X., Li, S., 2014. Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland. J. Geophys. Res. Biogeosciences 358–371.
  • Jackson, R.B., O.E. Sala, J.M. Paruelo, and H.A.M., 1998. Ecosystem water fluxes for two grasslands in elevated CO2: a modeling analysis. Oecologia 113, 537–546.
  • Jensen, M.E., Burman, R.D., Allen R.G., 1990. Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Engineering Practice. Am. Soc. Civ. Eng. 70, 332.
  • Keeling C.D, 1961. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 24, 277–298.
  • Liu, C., Zhang, X., Zhang, Y., 2002. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric. For. Meteorol. 111, 109–120.
  • Majoube, M., 1971. Fractionation of oxygen-18 and deuterium between water and its vapor. J. Chim. Phys. 197.
  • Meyers, T.P., 2001. A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agric. For. Meteorol. 106, 205–214.
  • Moncrieff, J.B., Jarvis, P.G., Valentini, R., 2000. Methods in ecosystem science. Springer, New York 407.
  • Monteith, J.L., Unsworth, M.H., 2013. Principles of environmental physics plants, animals and the atmosphere, Fourth. ed., pp:300.
  • Moreira, M. Z., Sternberg, L.S., Martinelli, L, Reynaldo, L.V, Barbosa, E., Bonates, L., Nepstad, D., 1997. Contribution of transpiration to forest ambient vapour based on isotopic measurements. Glob. Chang. Biol. 3, 439–450.
  • Paruelo, J.M., Sala, O., 1995. Water losses in the Patagonian steppe: A modeling approach. Ecology 76, 510–520.
  • Reynolds, J.F., Kemp, P.R., Tenhunen, J.D., 2000. Effects of long-term variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecol 150, 145–159.
  • Rothfuss, Y., Biron, P., Braud, I., Canale, L., Durand, J.L., Gaudet, J.P., Richard, P., Vauclin, M., Bariac, T., 2010. Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrol. Process 24, 3177–3194.
  • Oweis T, Ilbeyi A (2001). Supplemental irrigation potential for wheat in the Central Anatolian plateau. International central for agricultural research and dry areas ICARDA report. 103: 78-87.
  • Shang, S., Li, X., Mao, X., Lei, Z., 2004. Simulation of water dynamics and irrigation scheduling for winter wheat and maize in seasonal frost areas. Agric. Water Manag. 68, 117–133.
  • Shichun, Z., Xuefa, W., Jianlin, W., Guirui, Y., Xiaomin, S., 2010. The use of stable isotopes to partition evapotranspiration fluxes into evaporation and transpiration. Acta Ecol. Sin. 30, 201–209.
  • Sun, S., Meng, P., Zhang, J., Wan, X., Zheng, N., He, C., 2014. Partitioning oak woodland evapotranspiration in the rocky mountainous area of North China was disturbed by foreign vapor, as estimated based on non-steady-state 18O isotopic composition. Agric. For. Meteorol. 184, 36–47.
  • Tan, Q., Zhang, S., Li, L., 2017. Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water. 9, 488.
  • TUIK, 2016. Türkiye İstatistik Kurumu. Bitki Üretim verileri.
  • Wang, X.F., Yakir D., 1995. Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species. Plant Cell Environ. 18, 1377–1385.
  • Wang, X.F., Yakir, D., 2000. Using stable isotopes of water in evapotranspiration studies. Hydrol. Process. 14, 1407–1421.
  • Wang L., D’Odorico, P., Evans, J.P., Eldridge, D.J., McCabe, M. F.,. Caylor, K. K and King E. G. 2012. Dryland ecohydrology and climate change: critical issues and technical advances Hydrol. Earth Syst. Sci., 16, 2585–2603.
  • Wang, X.M., Liu, H.J., Zhang, L.W., Zhang, R.H., 2014. Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District. Water Sci. Eng. 7, 250–266.
  • Williams, D.G., Cable, W., Hultine, K., Hoedjes, J.C.B., Yepez, E.A., Simonneaux, V., Er-Raki, S., Boulet, G., De Bruin, H.A.R., Chehbouni, A., Hartogensis, O.K., Timouk, F., 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 125, 241–258.
  • Wilson, K.B., Carlsoni, T.N., Bunce, J., 1999. Feedback significantly influences the simulated effect of CO2 on seasonal evapotranspiration from two agricultural species. Glob. Chang. Biol. 5, 903–917.
  • Xu, Z., Yang, H., Liu, F., An, S., Cui, J., Wang, Z., Liu, S., 2008. Partitioning evapotranspiration flux components in a subalpine shrubland based on stable isotopic measurements. Bot. Stud. 49, 351–361.
  • Yakir, D., Sternberg, L.S., 2000. The use of stable isotope to study ecosystem gas exchange. Oecologia 123, 297–311.
  • Yang, Y., Scott, R.L., Shang, S., 2013. Modeling evapotranspiration and its partitioning over a semiarid shrub ecosystem from satellite imagery: a multiple validation. J. Appl. Sci. 7, 1–15.
  • Yepez, E.A., Williams, D.G., Scott, R.L., Lin, G., 2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric. For. Meteorol. 119, 53–68.
  • Yuan, G.F., Zhang, N., Sun, X.M., Wen, X.F., Zhang, S.C., 2010. Partitioning wheat field evapotranspiration using Keeling plot method and continuous atmospheric vapor δ18O data. Chinies J. Plant Ecol. 34, 170–178.
  • Zhang, Y., Shen, Y., Sun, H., Gates, J.B., 2011. Evapotranspiration and its partitioning in an irrigated winter wheat field: A combined isotopic and micrometeorologic approach. J. Hydrol. 408, 203–211.
  • Zhou, L., Hoekstra, A.Y., 2017. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Front. Agr. Sci. Eng. 4(2): 185–194
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research
Authors

Sema Kale Çelik 0000-0001-8161-276X

Ufuk Türker 0000-0002-7527-7376

Sevinç Madenoğlu This is me 0000-0002-5012-2773

Bülent Sönmez This is me 0000-0002-5624-8051

Publication Date December 31, 2018
Submission Date September 13, 2018
Acceptance Date November 18, 2018
Published in Issue Year 2018 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı

Cite

APA Kale Çelik, S., Türker, U., Madenoğlu, S., Sönmez, B. (2018). Buğdayda Farklı Sulama Koşulları Altında Kararlı İzotop Karşılaştırma Metodu Kullanılarak Bitki Su Kullanım (Transpirasyon) Oranının Belirlenmesi. Ziraat Fakültesi Dergisi62-72.

24611

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.                                                                                                                           32607