Research Article
BibTex RIS Cite

NaCl Stresinin Bazı Armut ve Ayva Anaçlarının Yaprak Bakır, Bor, Çinko, Demir ve Mangan İçeriklerine Etkisi

Year 2022, Volume: 17 Issue: 1, 1 - 9, 28.06.2022
https://doi.org/10.54975/isubuzfd.986917

Abstract

Tuzluluk, gelişmiş bitkilerde verimliliği sınırlandıran önemli abiyotik stres faktörlerindendir. Tuzluluğa maruz kalan bitkilerde görülen besin maddesi dengesizliği, hücre bütünlüğünün bozulmasına neden olmakta, bu durum ise bitkiler için hayati olan metabolik fonksiyonların bozulmasına yol açmaktadır. İki yıl tekrarlamalı olarak yapılan çalışmada; 18 litrelik saksılarda bulunan OHxF 97, OHxF 333, Fox 11 ve BA 29 anaçlarında kontrol, 20 mM, 40 mM ve 80 mM NaCl içeren sulama suyu ile stres oluşturulmuştur. İki ayın sonunda alınan yaprak örneklerinde Fe3+, Cu2+, Mn2+, Zn2+ ve B+ mikro element içerikleri saptanmıştır. Araştırma sonuçlarına göre NaCl stresi altında farklı armut ve ayva anaçlarında Fe3+, Cu2+, Mn2+, Zn2+ ve B+ mikro element içerikleri anaçlara ve tuz kostantrasyonuna bağlı olarak yıllara göre değişkenlikler göstermiştir. Genel olarak şiddetli (80 mM) tuz stresi altında mikro element içeriklerinin daha düşük olduğu belirlenmiştir. İki yıl ortalamasına göre tuzlu koşullarda toplam mikro element alımı yaklaşık %6 oranında azalmıştır. Her iki yılda da tuz stresi altında B+ elementi alımının azaldığı saptanmıştır. Çalışmada Fe3+ ve Mn2+ alımında Fox 11 ve BA 29 anaçları; Zn2+ ve Cu2+alımında Fox 11 anacı ve B+ alımında OHxF 97 ve OHxF 333 anaçları ön plana çıkmıştır. Genelde Fox 11 ve BA 29 anaçlarının topraktan daha fazla mikro besin elementi kaldırdığı görülmüştür.

Supporting Institution

TÜBİTAK

Project Number

116O721

Thanks

TÜBİTAK ve Meyvecilik Araştırma Enstitüsü Müdürlüğü

References

  • Abdelhamid, M. T., Sadak, M., Schmidhalter, U., & El-Saady, A. K. (2013). Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biológica Colombiana, 18(3), 499-510.
  • Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49-60. https://doi.org/10.1016/j.plaphy.2012.11.004
  • Alvarez-Gerding, X., Espinoza, C., Inostroza-Blancheteau, C., & Arce-Johnson, P. (2015). Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiology and Biochemistry, 92, 71-80. https://doi.org/10.1016/j.plaphy.2015.04.005
  • Amiri, M. E., & Fallahi, E. (2009). Potential of mineral up-take efficiency by some apple rootstocks. The Proceedings of the International Plant Nutrition Colloquium XVI. https://escholarship.org/uc/item/58p8c7cn
  • Anonim, 2021. Armut Haziran-2021 Tarım Ürünleri Piyasa Raporu. TEPGE. Erişim adres https://arastirma.tarimorman.gov.tr/tepge
  • Ashraf, M., & Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1), 17-42. https://doi.org/10.1080/07352689409701906
  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. https://doi.org/10.1016/j.plantsci. 2003.10.024
  • Bergmann, W. (1992). Nutritional disorders of plants: visual and analytical diagnosis. Gustav Fischer, Stuttgart, Germany.
  • Bolat, İ., & Kara, Ö. (2017). Bitki Besin Elementleri: Kaynakları, İşlevleri, Eksik ve Fazlalıkları. Bartın Orman Fakültesi Dergisi, 19(1), 218-228.
  • Borghesi, E., Carmassi, G., Uguccioni, M. C., Vernieri, P., & Malorgio, F. (2013). Effects of calcium and salinity stress on quality of lettuce in soilless culture. Journal of Plant Nutrition, 36(5), 677-690. https://doi.org/10.1080/01904167.2012.721909
  • Boshkovski, B., Tzerakis, C., Doupis, G., Zapolska, A., Kalaitzidis, C. &, Koubouris, G. (2020). Relationships of spectral reflectance with plant tissue mineral elements of common bean (Phaseolus vulgaris L.) under drought and salinity stresses. Communications in Soil Scinece and Plant Analysis, 51(5), 675-686. https://doi.org/10.1080/00103624.2020.1729789
  • Byrt, C. S., & Munns, R. (2008). Living with salinity. New Phytologist, 179(4), 903-905.
  • Dahiya, S. S., & Singh, M. (1976). Effect os salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. Plant Soil, 44, 697-702.
  • Doğan, İ., Özyiğit, İ. İ., & Demir, G. (2012). Mineral element distribution of cotton (Gossypium hirsutum L.) seedlings under different levels. Pakistan Journal of Botany, 44, 15-20.
  • Ferreira-Silva, S. L., Silva, E. N., Carvalho, F. E. L., de Lima, C. S., Alves, F. A. L., & Silveira, J. A. G. (2010). Physiological alterations modulated by rootstock and scion combination cashew under salinity. Scientia Horticulturae, 127(1), 39-45. https://doi.org/10.1016/j.scienta.2010.09.010
  • Foolad, M. R. (2004). Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue and Organ Culture, 76(2), 101-119.
  • García-Sánchez, F., Jifon, J. L., Carvajal, M., & Syvertsen, J. P. (2002). Gas exchange chlorophyll and nutrient contents in relation to Na+ and Cl– accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Science, 162(5), 705-712. https://doi.org/10.1016/S0168-9452(02)00010-9
  • Grattan, S. R., & Grieve, C. M. (1998). Salinity-nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127-157. https://doi.org/10.1016/S0304-4238(98)00192-7
  • Guo, H., Li, S., Min, W., Ye, J., & Hou, Z. (2019) Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. PLoS one, 14(12), e0226776. https://doi.org/10.1371/journal.pone.0226776
  • He, Y., Zhu, Z., Yang, J., Ni, X., & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007
  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrient and Soil Science, 168(4), 541-549. https://doi.org/10.1002/jpln.200420516
  • Kaçar, B. (1995). Bitki Ve Toprağın Kimyasal Analizleri: III, Toprak Analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma Ve Geliştirme Vakfı Yayınları, Ankara, Türkiye. Kaçar, B., & İnal, A. (2008). Bitki analizleri. Nobel Yayın, Ankara, Türkiye.
  • Karakaya, A., Uysal, M., Sözüdoğru, O. S., Çaycı, G., Kendir, H., Arcak, S., Koç, A., Gümüş, A. A., Omar, B., Akça, M. O., Temiz, Ç., Gönülal, E., & Özbedel, N. (2018). Tuzlu ve Alkali Alanlarda Kullanılabilecek Bazı Bitki Türlerinin Tespiti ve Adaptasyonu Projesi Sonuç Raporu. Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Erozyon Kontrolü Dairesi Başkanlığı.
  • Khan, M. S., Akther, T., Mubarak Ali, D., & Hemalatha, S. (2019). An investigation on the role of salicylic acid alleviate the saline stress in rice crop (Oryza sativa (L)). Biocatalysis and Agricultural Biotechnology, 18, 101027. https://doi.org/10.1016/j.bcab.2019.101027
  • Kim, B. M., Lee, H. J., Song, Y. H., & Kim, H. J. (2021). Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach. Journal of the Science of Food and Agriculture, 101, 3787-3794. https://doi.org/10.1002/ jsfa.11011
  • Koç, D. L., & Kanber, R. (2020). Tuzlu-Sodyumlu Helvacı Serisi Topraklarının Tuzluluk ve Sodyumluluk Belirteçlerinin Değişimi. KSÜ Tarım ve Doğa Dergisi, 23(4), 1064-1077. https://doi.org/10.18016/ksutarimdoga.vi.597992
  • Küçükyumuk, C., Yıldız, H., Küçükyumuk, Z., & Ünlükara, A. (2015). Responses of “0900 Ziraat” sweet cherry variety grafted on different rootstocks to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 214-221. https://doi.org/10.15835/ nbha4319754
  • Küçükyumuk, Z., & Erdal, İ. (2009). Anaç ve Çeşidin Elmanın Mineral Beslenmesine Etkisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 4(2), 8-16.
  • Maas, E. V. (1993). Salinity and citriculture. Tree physiology, 12(2), 195-216. https://doi.org/10.1093/treephys/ 12.2.195
  • Maas, E. V., Ogata, G., & Garber, M. J. (1972). Influence of salinity on Fe, Mn, and Zn uptake by plants. Agronomy Journal, 64, 793-795. https://doi.org/10.2134/agronj1972. 00021962006400060026x
  • Mansour, M. M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, (52-68). https://doi.org/10.1016/j.phytochem. 2017.04.016
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press, London, England.
  • Moreno, D. A., Pulgar, G., & Romero, L. (2000). Yield improvement in zucchini under salt stress: determining micronutrient balance. Scientia Horticulturae, 86(3), 175-183. https://doi.org/10.1016/S0304-4238(00)00149-7
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
  • Musacchi, S., Quartieri, M., & Tagliavini, M. (2006). Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. European Journal of Agronomy, 24(3), 268-275. https://doi.org/10.1016/j.eja.2005.10.003
  • Okubo, M., Furukawa, Y., & Sakuratani, T. (2000). Growth fowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Scientia Horticulturae, 85(1-2), 91-101. https://doi.org/10.1016/S0304-4238(99)00145-4
  • Papadakis, I. E., Veneti, G., Chatzissavvidis, C., Sotiropoulos, T. E., Dimassi, K. N., & Therios, I. N. (2007). Growth mineral composition. leaf chlorophyll and water relationships of two cherry varieties under NaCl-induced salinity stress. Soil Science and Plant Nutrition, 53(3), 252-258. https://doi.org/10.1111/j.1747-0765.2007.00130.x
  • Penella, C., Nebauer, S. G., Quinones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant science, 230, 12-22. https://doi.org/10.1016/j.plantsci.2014.10.007
  • Polat, D., Yıldırım, F., & Yıldırım, A. N. (2020). Identification of Minerals in Leaves of 14 Apple Rootstocks in Stool Bed Condition. Erwerbs-Obstbau, 62(1), 77-81.
  • Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37 (7), 613-620.
  • Sotiropoulos, T. E., Therios, I. N., Tsirakoglou, V., & Dimassi, K. N. (2006). Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity. International Journal of Fruit Science, 6(4), 93-101. https://doi.org/10.1300/J492v06n04_09
  • Talei, D., Kadir, M. A., Yusop, M. K., Valdiani, A., & Abdullah, M. P. (2012). Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant Omics Journal, 5(3), 271-278.
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419-438. https://doi.org/10.1016/S0076-6879(07)28024-3
  • Vikipedi, 2021. Dünya nüfusu. Erişim adresi https://tr.wikipedia.org/wiki/D%C3%BCnya_n%C3%BCfusu#:~:text.
  • Yin, F., Zhang, S., Cao, B., & Xu, K. (2021). Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents. PeerJ, 9, e10832.
  • Zhen, A., Bie, Z., Huang, Y., Liu, Z., & Li, Q. (2010). Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 56(2), 263-271. https://doi.org/10.1111/j.1747-0765.2010.00448.x
  • Zrig, A., Mohamed, H. B., Tounekti, T., Khemira, H., Serrano, M., Valero, D., & Vadel, A. M. (2016). Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 102, 50-59. https://doi.org/10.1016/j.sajb.2015.09.001

The Effect of NaCl Stress on Leaves Copper, Boron, Zinc, Iron and Manganese Contents of Some Pear and Quince Rootstocks

Year 2022, Volume: 17 Issue: 1, 1 - 9, 28.06.2022
https://doi.org/10.54975/isubuzfd.986917

Abstract

Salinity is one of the most important abiotic stress factors limiting the productivity in higher plants. The nutrition imbalance in plants that exposed to salinity caused deterioration of cell integrity which leads to the impairment of metabolic functions that are vital for plants. The research was carried out repeatedly for two years. At the end of study the changes of Fe3+, Cu2+, Mn2+, Zn2+ and B+ elements that occur in leaves together with salt stress were investigated. According to the results of the research, Fe3+, Cu2+, Mn2+, Zn2+ and B+ microelement contents in different pear and quince rootstocks under NaCl stress varied over the years depending on the rootstocks and salt concentration. Especially in plants exposed to heavy NaCl stress (80 mM), it was observed that the existing changes were more clear. Compared to the two-year average, the total microelements intake decreased by approximately 6% in saline conditions. It was determined that the intake of B+ element decreased under salt stress in both years. Our results showed that Fox 11 and BA 29 rootstocks in Fe3+ and Mn2+ uptake; Fox 11 rootstock in Zn2+ and Cu2+ uptake, and OHxF 97 and OHxF 333 rootstocks in B+ uptake were noted. In general, Fox 11 and BA 29 rootstocks were found to remove more micronutrients from the soil.

Project Number

116O721

References

  • Abdelhamid, M. T., Sadak, M., Schmidhalter, U., & El-Saady, A. K. (2013). Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biológica Colombiana, 18(3), 499-510.
  • Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49-60. https://doi.org/10.1016/j.plaphy.2012.11.004
  • Alvarez-Gerding, X., Espinoza, C., Inostroza-Blancheteau, C., & Arce-Johnson, P. (2015). Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiology and Biochemistry, 92, 71-80. https://doi.org/10.1016/j.plaphy.2015.04.005
  • Amiri, M. E., & Fallahi, E. (2009). Potential of mineral up-take efficiency by some apple rootstocks. The Proceedings of the International Plant Nutrition Colloquium XVI. https://escholarship.org/uc/item/58p8c7cn
  • Anonim, 2021. Armut Haziran-2021 Tarım Ürünleri Piyasa Raporu. TEPGE. Erişim adres https://arastirma.tarimorman.gov.tr/tepge
  • Ashraf, M., & Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1), 17-42. https://doi.org/10.1080/07352689409701906
  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. https://doi.org/10.1016/j.plantsci. 2003.10.024
  • Bergmann, W. (1992). Nutritional disorders of plants: visual and analytical diagnosis. Gustav Fischer, Stuttgart, Germany.
  • Bolat, İ., & Kara, Ö. (2017). Bitki Besin Elementleri: Kaynakları, İşlevleri, Eksik ve Fazlalıkları. Bartın Orman Fakültesi Dergisi, 19(1), 218-228.
  • Borghesi, E., Carmassi, G., Uguccioni, M. C., Vernieri, P., & Malorgio, F. (2013). Effects of calcium and salinity stress on quality of lettuce in soilless culture. Journal of Plant Nutrition, 36(5), 677-690. https://doi.org/10.1080/01904167.2012.721909
  • Boshkovski, B., Tzerakis, C., Doupis, G., Zapolska, A., Kalaitzidis, C. &, Koubouris, G. (2020). Relationships of spectral reflectance with plant tissue mineral elements of common bean (Phaseolus vulgaris L.) under drought and salinity stresses. Communications in Soil Scinece and Plant Analysis, 51(5), 675-686. https://doi.org/10.1080/00103624.2020.1729789
  • Byrt, C. S., & Munns, R. (2008). Living with salinity. New Phytologist, 179(4), 903-905.
  • Dahiya, S. S., & Singh, M. (1976). Effect os salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. Plant Soil, 44, 697-702.
  • Doğan, İ., Özyiğit, İ. İ., & Demir, G. (2012). Mineral element distribution of cotton (Gossypium hirsutum L.) seedlings under different levels. Pakistan Journal of Botany, 44, 15-20.
  • Ferreira-Silva, S. L., Silva, E. N., Carvalho, F. E. L., de Lima, C. S., Alves, F. A. L., & Silveira, J. A. G. (2010). Physiological alterations modulated by rootstock and scion combination cashew under salinity. Scientia Horticulturae, 127(1), 39-45. https://doi.org/10.1016/j.scienta.2010.09.010
  • Foolad, M. R. (2004). Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue and Organ Culture, 76(2), 101-119.
  • García-Sánchez, F., Jifon, J. L., Carvajal, M., & Syvertsen, J. P. (2002). Gas exchange chlorophyll and nutrient contents in relation to Na+ and Cl– accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Science, 162(5), 705-712. https://doi.org/10.1016/S0168-9452(02)00010-9
  • Grattan, S. R., & Grieve, C. M. (1998). Salinity-nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127-157. https://doi.org/10.1016/S0304-4238(98)00192-7
  • Guo, H., Li, S., Min, W., Ye, J., & Hou, Z. (2019) Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. PLoS one, 14(12), e0226776. https://doi.org/10.1371/journal.pone.0226776
  • He, Y., Zhu, Z., Yang, J., Ni, X., & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007
  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrient and Soil Science, 168(4), 541-549. https://doi.org/10.1002/jpln.200420516
  • Kaçar, B. (1995). Bitki Ve Toprağın Kimyasal Analizleri: III, Toprak Analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma Ve Geliştirme Vakfı Yayınları, Ankara, Türkiye. Kaçar, B., & İnal, A. (2008). Bitki analizleri. Nobel Yayın, Ankara, Türkiye.
  • Karakaya, A., Uysal, M., Sözüdoğru, O. S., Çaycı, G., Kendir, H., Arcak, S., Koç, A., Gümüş, A. A., Omar, B., Akça, M. O., Temiz, Ç., Gönülal, E., & Özbedel, N. (2018). Tuzlu ve Alkali Alanlarda Kullanılabilecek Bazı Bitki Türlerinin Tespiti ve Adaptasyonu Projesi Sonuç Raporu. Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Erozyon Kontrolü Dairesi Başkanlığı.
  • Khan, M. S., Akther, T., Mubarak Ali, D., & Hemalatha, S. (2019). An investigation on the role of salicylic acid alleviate the saline stress in rice crop (Oryza sativa (L)). Biocatalysis and Agricultural Biotechnology, 18, 101027. https://doi.org/10.1016/j.bcab.2019.101027
  • Kim, B. M., Lee, H. J., Song, Y. H., & Kim, H. J. (2021). Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach. Journal of the Science of Food and Agriculture, 101, 3787-3794. https://doi.org/10.1002/ jsfa.11011
  • Koç, D. L., & Kanber, R. (2020). Tuzlu-Sodyumlu Helvacı Serisi Topraklarının Tuzluluk ve Sodyumluluk Belirteçlerinin Değişimi. KSÜ Tarım ve Doğa Dergisi, 23(4), 1064-1077. https://doi.org/10.18016/ksutarimdoga.vi.597992
  • Küçükyumuk, C., Yıldız, H., Küçükyumuk, Z., & Ünlükara, A. (2015). Responses of “0900 Ziraat” sweet cherry variety grafted on different rootstocks to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 214-221. https://doi.org/10.15835/ nbha4319754
  • Küçükyumuk, Z., & Erdal, İ. (2009). Anaç ve Çeşidin Elmanın Mineral Beslenmesine Etkisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 4(2), 8-16.
  • Maas, E. V. (1993). Salinity and citriculture. Tree physiology, 12(2), 195-216. https://doi.org/10.1093/treephys/ 12.2.195
  • Maas, E. V., Ogata, G., & Garber, M. J. (1972). Influence of salinity on Fe, Mn, and Zn uptake by plants. Agronomy Journal, 64, 793-795. https://doi.org/10.2134/agronj1972. 00021962006400060026x
  • Mansour, M. M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, (52-68). https://doi.org/10.1016/j.phytochem. 2017.04.016
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press, London, England.
  • Moreno, D. A., Pulgar, G., & Romero, L. (2000). Yield improvement in zucchini under salt stress: determining micronutrient balance. Scientia Horticulturae, 86(3), 175-183. https://doi.org/10.1016/S0304-4238(00)00149-7
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
  • Musacchi, S., Quartieri, M., & Tagliavini, M. (2006). Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. European Journal of Agronomy, 24(3), 268-275. https://doi.org/10.1016/j.eja.2005.10.003
  • Okubo, M., Furukawa, Y., & Sakuratani, T. (2000). Growth fowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Scientia Horticulturae, 85(1-2), 91-101. https://doi.org/10.1016/S0304-4238(99)00145-4
  • Papadakis, I. E., Veneti, G., Chatzissavvidis, C., Sotiropoulos, T. E., Dimassi, K. N., & Therios, I. N. (2007). Growth mineral composition. leaf chlorophyll and water relationships of two cherry varieties under NaCl-induced salinity stress. Soil Science and Plant Nutrition, 53(3), 252-258. https://doi.org/10.1111/j.1747-0765.2007.00130.x
  • Penella, C., Nebauer, S. G., Quinones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant science, 230, 12-22. https://doi.org/10.1016/j.plantsci.2014.10.007
  • Polat, D., Yıldırım, F., & Yıldırım, A. N. (2020). Identification of Minerals in Leaves of 14 Apple Rootstocks in Stool Bed Condition. Erwerbs-Obstbau, 62(1), 77-81.
  • Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37 (7), 613-620.
  • Sotiropoulos, T. E., Therios, I. N., Tsirakoglou, V., & Dimassi, K. N. (2006). Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity. International Journal of Fruit Science, 6(4), 93-101. https://doi.org/10.1300/J492v06n04_09
  • Talei, D., Kadir, M. A., Yusop, M. K., Valdiani, A., & Abdullah, M. P. (2012). Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant Omics Journal, 5(3), 271-278.
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419-438. https://doi.org/10.1016/S0076-6879(07)28024-3
  • Vikipedi, 2021. Dünya nüfusu. Erişim adresi https://tr.wikipedia.org/wiki/D%C3%BCnya_n%C3%BCfusu#:~:text.
  • Yin, F., Zhang, S., Cao, B., & Xu, K. (2021). Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents. PeerJ, 9, e10832.
  • Zhen, A., Bie, Z., Huang, Y., Liu, Z., & Li, Q. (2010). Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 56(2), 263-271. https://doi.org/10.1111/j.1747-0765.2010.00448.x
  • Zrig, A., Mohamed, H. B., Tounekti, T., Khemira, H., Serrano, M., Valero, D., & Vadel, A. M. (2016). Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 102, 50-59. https://doi.org/10.1016/j.sajb.2015.09.001
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research
Authors

Melih Aydınlı 0000-0002-1166-5791

Fatma Yıldırım 0000-0001-7304-9647

Bahar Türkeli 0000-0002-0301-709X

Project Number 116O721
Early Pub Date June 27, 2022
Publication Date June 28, 2022
Submission Date August 25, 2021
Acceptance Date March 7, 2022
Published in Issue Year 2022 Volume: 17 Issue: 1

Cite

APA Aydınlı, M., Yıldırım, F., & Türkeli, B. (2022). NaCl Stresinin Bazı Armut ve Ayva Anaçlarının Yaprak Bakır, Bor, Çinko, Demir ve Mangan İçeriklerine Etkisi. Ziraat Fakültesi Dergisi, 17(1), 1-9. https://doi.org/10.54975/isubuzfd.986917

24611

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.                                                                                                                           32607