BIOfactor MTA’nın Radyoopasitesinin Dijital Radyografi ile Değerlendirilmesi
Year 2022,
, 520 - 526, 24.08.2022
Şeref Nur Mutlu
,
Makbule Bilge Akbulut
Abstract
Amaç: İdeal bir kök kanal materyali, kemik ve diş gibi anatomik yapılardan ve diğer dental materyallerden ayırt edilmesine izin verecek kadar yeterli seviyede radyoopak olmalıdır. Bu çalışmada Angelus MTA, Biodentine ve yeni bir kalsiyum silikat esaslı materyal olan BIOfactor MTA’nın radyoopasitesi alüminyum basamaklı blok yöntemi kullanılarak değerlendirilmiştir.
Gereç ve Yöntemler: Kalsiyum silikat esaslı materyaller olan Angelus MTA, Biodentine ve BIOfactor MTA üretici firmanın talimatları doğrultusunda karıştırıldı ve standart bir teflon kalıba yerleştirildi. Başlangıç sertleşmelerini tamamlayan materyaller kalıptan çıkarılarak 37°C'de, %95 nemli ortamda 48 saat inkübe edildi. Her gruptan alınan birer numune ve saf alüminyumdan yapılan oniki basamaklı merdiven şeklindeki blok, fosfor plak üzerine yerleştirilerek radyografisi çekildi. Dijital görüntüler bir yazılım kullanılarak bilgisayara aktarıldı. Numunelerin radyografik yoğunlukları Image J programı kullanılarak belirlendi ve değerler bir denklem kullanılarak milimetre alüminyum (mmAl)’a dönüştürüldü. İstatistiksel analiz için One-way ANOVA ve post-hoc Tukey testleri yapıldı.
Bulgular: Ortalama radyoopasite değerleri Angelus MTA’nın 3.66, Biodentin’in 2.43 ve BIOfactor MTA’nın 4.41 mmAl idi.
Sonuç: Biodentine en düşük radyoopasite değerini gösterirken, BIOfactor MTA en yüksek radyoopasite değerini gösterdi. Angelus MTA ve yeni bir materyal olan BIOfactor MTA’nın radyoopasitesi standarta uygundu.
Supporting Institution
Destekleyen Kurum bulunmamaktadır
Project Number
Proje makalesi değildir
References
- Council on Dental Materials I, Equipment. American National Standards Institute/American Dental Association Specification No. 61 for zinc polycarboxylate cement. J Am Dent Assoc. 1980;101:669-671.
- Imai Y, Komabayashi T. Properties of a new injectable type of root canal filling resin with adhesiveness to dentin. J Endod. 2003;29:20-23.
- Higginbotham TL. A comparative study of the physical properties of five commonly used root canal sealers. Oral Surg Oral Med Oral Path. 1967;24:89-101.
- Elíasson ST, Haasken B. Radiopacity of impression materials. Oral Surg Oral Med Oral Path. 1979;47:485-491.
- Beyer-Olsen EM, Ørstavik D. Radiopacity of root canal sealers. Oral Surg Oral Med Oral Path. 1981;51:320-328.
- International Organization for Standardization - ISO IG, Switzerland. Dental root canal sealing materials. In: International Organization for Standardization Geneva, Switzerland; 2001.
- American National Standard/American Dental Assocation AAS, Standard No. 57, Chicago,. Endodontic Sealing Material. 2000.
- Ochoa-Rodríguez VM, Wilches-Visbal JH, Roma B, et al. Radiopacity of endodontic materials using two models for conversion to millimeters of aluminum. Braz Oral Res. 2020;34.
- Tagger M, Katz A. Radiopacity of endodontic sealers: development of a new method for direct measurement. J Endod. 2003;29:751-755.
- Siboni F, Taddei P, Prati C, Gandolfi M. Properties of Neo MTA Plus and MTA Plus cements for endodontics. Int Endod J. 2017;50:e83-e94.
- Tanomaru-Filho M, Torres FFE, Chávez-Andrade GM, et al. Physicochemical properties and volumetric change of silicone/bioactive glass and calcium silicate–based endodontic sealers. J Endod. 2017;43:2097-2101.
- Akcay I, Ilhan B, Dundar N. Comparison of conventional and digital radiography systems with regard to radiopacity of root canal filling materials. Int Endod J. 2012;45:730-736.
- Chen Y-Z, Lü X-Y, Liu G-D. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material. ploS one. 2018;13:e0191123.
- Versiani MA, Abi Rached-Junior FJ, Kishen A, Pécora JD, Silva-Sousa YT, de Sousa-Neto MD. Zinc oxide nanoparticles enhance physicochemical characteristics of Grossman sealer. J Endod. 2016;42:1804-1810.
- Rasimick BJ, Shah RP, Musikant BL, Deutsch AS. Radiopacity of endodontic materials on film and a digital sensor. J Endod. 2007;33:1098-1101.
- Ochoa-Rodríguez VM, Tanomaru-Filho M, Rodrigues EM, Guerreiro-Tanomaru JM, Spin-Neto R, Faria G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J Appl Oral Sci. 2019;27.
- Sabbagh J, Vreven J, Leloup GJOd. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). 2004;29:677-684.
- Baksi BG, Sen BH, Eyuboglu TF. Differences in aluminum equivalent values of endodontic sealers: conventional versus digital radiography. J Endod. 2008;34:1101-1104.
- An S-Y, An C-H, Choi K-S, et al. Radiopacity of contemporary luting cements using conventional and digital radiography. Imaging Sci Dent. 2018;48:97-101.
- Lachowski KM, Botta S, Lascala C, Matos A, Sobral M. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofac Radiol. 2013;42:20120153.
- Yasa B, Kucukyilmaz E, Yasa E, Ertas ET. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography. J Oral Sci. 2015;57:79-85.
- Carvalho‐Junior J, Correr‐Sobrinho L, Correr A, Sinhoreti M, Consani S, Sousa‐Neto M. Radiopacity of root filling materials using digital radiography. Int Endod J. 2007;40:514-520.
- Goshima T, Goshima Y. The optimum level of radiopacity in posterior composite resins. Dentomaxillofac Radiol. 1989;18:19-21.
- Gu S, Rasimick BJ, Deutsch AS, Musikant BL. Radiopacity of dental materials using a digital X-ray system. Dent Mater J. 2006;22:765-770.
- Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent. 2004;29:677-684.
- Silveira G. Comparative study of the radiopacity of the light-cured dental composite resins of high or low flowable, using digital image, Doctoral Thesis. Sao Paulo: School of Dentistry, University of Sao Paulo; 2002.
- McDonnell D, Price C. An evaluation of the Sens-A-Ray digital dental imaging system. Dentomaxillofac Radiol. 1993;22:121-126.
- Gürdal P, Akdeniz B. Comparison of two methods for radiometric evaluation of resin-based restorative materials. Dentomaxillofac Radiol. 1998;27:236-239.
- Syriopoulos K, Sanderink G, Velders X, Van Der Stelt P. Radiographic detection of approximal caries: a comparison of dental films and digital imaging systems. Dentomaxillofac Radiol. 2000;29:312-318.
- Farman A, Scarfe W. Pixel perception and voxel vision: constructs for a new paradigm in maxillofacial imaging. Dentomaxillofac Radiol. 1994;23:5-9.
- Vivan RR, Ordinola-Zapata R, Bramante CM, et al. Evaluation of the radiopacity of some commercial and experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e35-e38.
- Tanomaru-Filho M, Silva GFd, Duarte MAH, Gonçalves M, Tanomaru JMG. Radiopacity evaluation of root-end filling materials by digitization of images. J Appl Oral Sci. 2008;16:376-379.
- Cavenago B, Pereira T, Duarte M, et al. Influence of powder‐to‐water ratio on radiopacity, setting time, pH, calcium ion release and a micro‐CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014;47:120-126.
- Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007;40:462-470.
- Min K-S, Chang H-S, Bae J-M, Park S-H, Hong C-U, Kim E-C. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells. J Endod. 2007;33:1342-1346.
- Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement–based (MTA-like) system. J Endod. 2007;33:295-298.
- Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20:1-25.
- Kaup M, Schäfer E, Dammaschke T, medicine f. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:1-8.
- Tanalp J, Karapınar-Kazandağ M, Dölekoğlu S, Kayahan MB. Comparison of the radiopacities of different root-end filling and repair materials. ScientificWorldJournal. 2013;2013.
- Akbulut MB, Bozkurt DA, Terlemez A, Akman M. The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material. Restor Dent Endod. 2019;44.
- Costa BC, Guerreiro-Tanomaru JM, Bosso-Martelo R, Rodrigues EM, Bonetti-Filho I, Tanomaru-Filho M. Ytterbium oxide as radiopacifier of calcium silicate-based cements. Physicochemical and biological properties. Br Dent J. 2018;29:452-458.
Year 2022,
, 520 - 526, 24.08.2022
Şeref Nur Mutlu
,
Makbule Bilge Akbulut
Project Number
Proje makalesi değildir
References
- Council on Dental Materials I, Equipment. American National Standards Institute/American Dental Association Specification No. 61 for zinc polycarboxylate cement. J Am Dent Assoc. 1980;101:669-671.
- Imai Y, Komabayashi T. Properties of a new injectable type of root canal filling resin with adhesiveness to dentin. J Endod. 2003;29:20-23.
- Higginbotham TL. A comparative study of the physical properties of five commonly used root canal sealers. Oral Surg Oral Med Oral Path. 1967;24:89-101.
- Elíasson ST, Haasken B. Radiopacity of impression materials. Oral Surg Oral Med Oral Path. 1979;47:485-491.
- Beyer-Olsen EM, Ørstavik D. Radiopacity of root canal sealers. Oral Surg Oral Med Oral Path. 1981;51:320-328.
- International Organization for Standardization - ISO IG, Switzerland. Dental root canal sealing materials. In: International Organization for Standardization Geneva, Switzerland; 2001.
- American National Standard/American Dental Assocation AAS, Standard No. 57, Chicago,. Endodontic Sealing Material. 2000.
- Ochoa-Rodríguez VM, Wilches-Visbal JH, Roma B, et al. Radiopacity of endodontic materials using two models for conversion to millimeters of aluminum. Braz Oral Res. 2020;34.
- Tagger M, Katz A. Radiopacity of endodontic sealers: development of a new method for direct measurement. J Endod. 2003;29:751-755.
- Siboni F, Taddei P, Prati C, Gandolfi M. Properties of Neo MTA Plus and MTA Plus cements for endodontics. Int Endod J. 2017;50:e83-e94.
- Tanomaru-Filho M, Torres FFE, Chávez-Andrade GM, et al. Physicochemical properties and volumetric change of silicone/bioactive glass and calcium silicate–based endodontic sealers. J Endod. 2017;43:2097-2101.
- Akcay I, Ilhan B, Dundar N. Comparison of conventional and digital radiography systems with regard to radiopacity of root canal filling materials. Int Endod J. 2012;45:730-736.
- Chen Y-Z, Lü X-Y, Liu G-D. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material. ploS one. 2018;13:e0191123.
- Versiani MA, Abi Rached-Junior FJ, Kishen A, Pécora JD, Silva-Sousa YT, de Sousa-Neto MD. Zinc oxide nanoparticles enhance physicochemical characteristics of Grossman sealer. J Endod. 2016;42:1804-1810.
- Rasimick BJ, Shah RP, Musikant BL, Deutsch AS. Radiopacity of endodontic materials on film and a digital sensor. J Endod. 2007;33:1098-1101.
- Ochoa-Rodríguez VM, Tanomaru-Filho M, Rodrigues EM, Guerreiro-Tanomaru JM, Spin-Neto R, Faria G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J Appl Oral Sci. 2019;27.
- Sabbagh J, Vreven J, Leloup GJOd. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). 2004;29:677-684.
- Baksi BG, Sen BH, Eyuboglu TF. Differences in aluminum equivalent values of endodontic sealers: conventional versus digital radiography. J Endod. 2008;34:1101-1104.
- An S-Y, An C-H, Choi K-S, et al. Radiopacity of contemporary luting cements using conventional and digital radiography. Imaging Sci Dent. 2018;48:97-101.
- Lachowski KM, Botta S, Lascala C, Matos A, Sobral M. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofac Radiol. 2013;42:20120153.
- Yasa B, Kucukyilmaz E, Yasa E, Ertas ET. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography. J Oral Sci. 2015;57:79-85.
- Carvalho‐Junior J, Correr‐Sobrinho L, Correr A, Sinhoreti M, Consani S, Sousa‐Neto M. Radiopacity of root filling materials using digital radiography. Int Endod J. 2007;40:514-520.
- Goshima T, Goshima Y. The optimum level of radiopacity in posterior composite resins. Dentomaxillofac Radiol. 1989;18:19-21.
- Gu S, Rasimick BJ, Deutsch AS, Musikant BL. Radiopacity of dental materials using a digital X-ray system. Dent Mater J. 2006;22:765-770.
- Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent. 2004;29:677-684.
- Silveira G. Comparative study of the radiopacity of the light-cured dental composite resins of high or low flowable, using digital image, Doctoral Thesis. Sao Paulo: School of Dentistry, University of Sao Paulo; 2002.
- McDonnell D, Price C. An evaluation of the Sens-A-Ray digital dental imaging system. Dentomaxillofac Radiol. 1993;22:121-126.
- Gürdal P, Akdeniz B. Comparison of two methods for radiometric evaluation of resin-based restorative materials. Dentomaxillofac Radiol. 1998;27:236-239.
- Syriopoulos K, Sanderink G, Velders X, Van Der Stelt P. Radiographic detection of approximal caries: a comparison of dental films and digital imaging systems. Dentomaxillofac Radiol. 2000;29:312-318.
- Farman A, Scarfe W. Pixel perception and voxel vision: constructs for a new paradigm in maxillofacial imaging. Dentomaxillofac Radiol. 1994;23:5-9.
- Vivan RR, Ordinola-Zapata R, Bramante CM, et al. Evaluation of the radiopacity of some commercial and experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e35-e38.
- Tanomaru-Filho M, Silva GFd, Duarte MAH, Gonçalves M, Tanomaru JMG. Radiopacity evaluation of root-end filling materials by digitization of images. J Appl Oral Sci. 2008;16:376-379.
- Cavenago B, Pereira T, Duarte M, et al. Influence of powder‐to‐water ratio on radiopacity, setting time, pH, calcium ion release and a micro‐CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014;47:120-126.
- Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007;40:462-470.
- Min K-S, Chang H-S, Bae J-M, Park S-H, Hong C-U, Kim E-C. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells. J Endod. 2007;33:1342-1346.
- Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement–based (MTA-like) system. J Endod. 2007;33:295-298.
- Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20:1-25.
- Kaup M, Schäfer E, Dammaschke T, medicine f. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:1-8.
- Tanalp J, Karapınar-Kazandağ M, Dölekoğlu S, Kayahan MB. Comparison of the radiopacities of different root-end filling and repair materials. ScientificWorldJournal. 2013;2013.
- Akbulut MB, Bozkurt DA, Terlemez A, Akman M. The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material. Restor Dent Endod. 2019;44.
- Costa BC, Guerreiro-Tanomaru JM, Bosso-Martelo R, Rodrigues EM, Bonetti-Filho I, Tanomaru-Filho M. Ytterbium oxide as radiopacifier of calcium silicate-based cements. Physicochemical and biological properties. Br Dent J. 2018;29:452-458.