Review
BibTex RIS Cite

Dental İmplantolojide Polietereterketon (PEEK): Geleneksel Derleme

Year 2023, , 611 - 617, 25.12.2023
https://doi.org/10.15311/selcukdentj.1238899

Abstract

Günümüz diş hekimliğinde estetik restorasyonlara sürekli artan ilgiyle doğal diş yapısına benzer, biyouyumlu, iyi mekanik ve fiziksel özelliklere sahip metal içermeyen restorasyonlar daha sıklıkla tercih edilmektedir. Bu materyallerden biri olan termoplastik polimer yapısındaki Polietereterketon (PEEK) diş hekimliğinde kullanımı hızla yaygınlaşmaya başlamıştır. PEEK, keton ve eter fonksiyonel grupları ile birbirine bağlı aromatik halka ve amorf-kristal fazdan oluşan iki fazlı doğrusal zincir yapısına sahip, 1.3-1.5 g/cm3 yoğunlukta yarı kristalli termoplastik bir homopolimerdir. PEEK materyalinin biyouyumlu olması, elastik modülünün kemiğe daha yakın olması, şok absorpsiyonu, korozyona uğramaması, yüksek aşınma ve kırılma direncine sahip olması, üstün cilalanabilir özelliği ile plak tutulumun düşük olması ve metal restorasyonlara göre daha hafif bir materyal olması gibi özelliklere sahiptir. PEEK materyali, termal özellikleri nedeniyle insan vücudunda stabil kalmaktadır. Yüksek ısıya karşı dirençlidir ve birçok sterilizasyon yöntemine uygundur. Kimyasal olarak inert bir materyaldir. Bu sebeple diğer materyallere düşük reaksiyon gösterir ve birçok geleneksel çözeltide çözünmemektedir. PEEK materyaline karşı alerjik reaksiyon gelişme oranı düşüktür. Bu nedenle metal alerjisine sahip hastalar için iyi bir alternatiftir. Bu materyal diş hekimliğinde; implant materyali, implant abutment materyali, implant üstü dijital ölçü postu olarak, implant destekli overdenture protezlerde hassas bağlantı parçası olarak, implant üstü hibrit protezlerde alt yapı materyali, iyileşme başlığı materyali, sabit protezlerde alt yapı materyali, geçici kron materyali, hareketli protezlerde ana bağlayıcı ve kroşe materyali, okluzal splint materyali olarak kullanılabilmektedir.

Anahtar Kelimeler: Diş İmplantları, Diş Protezi, Polietereterketon

References

  • 1. Blanch-Martínez N, Arias-Herrera S, Martínez-González A. Behavior of polyether-ether-ketone (PEEK) in prostheses on dental implants. J Clin Exp Dent. 2021;13:520–6.
  • 2. Zoidis P, Papathanasiou I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. J Prosthet Dent. 2016 ;116:637–41.
  • 3. Kumar D, Rajmohan T, Venkatachalapathi S. Wear behavior of PEEK matrix composites: A Review. Materials Today: Proceedings, 2018.
  • 4. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007:4845–69.
  • 5. Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry. International Dental Research 2018;8:84–92.
  • 6. Schwitalla A, Müller WD. PEEK dental implants: A review of the literatüre. Journal of Oral Implantology. 2013. p. 743–9.
  • 7. Schwitalla AD, Abou-Emara M, Zimmermann T, Spintig T, Beuer F, Lackmann J, et al. The applicability of PEEK-based abutment screws. J Mech Behav Biomed Mater. 2016;63:244–51.
  • 8. Nobre M de A, Guedes CM, Almeida R, Silva A, Sereno N. Hybrid polyetheretherketone (PEEK)–acrylic resin prostheses and the all-on-4 concept: A full-arch implant-supported fixed solution with 3 years of follow-up. J Clin Med. 2020;9:1–18.
  • 9. K Emera R, Altonbary G, Elbashir S. Comparison between all zirconia, all PEEK, and zirconia-PEEK telescopic attachments for two implants retained mandibular complete overdentures: In vitro stress analysis study. Journal of Dental Implants. 2019;9:24.
  • 10. Simsiriwong J, Shrestha R, Shamsaei N, Lugo M, Moser RD. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK). J Mech Behav Biomed Mater. 2015;51:388–97.
  • 11. Kewekordes T, Wille S, Kern M. Wear of polyetherketoneketones — Influence of titanium dioxide content and antagonistic material. Dental Materials. 2018;34:560–7.
  • 12. Zoidis P, Papathanasiou I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. Journal of Prosthetic Dentistry. 2016;116:637–41.
  • 13. Zoidis P, Papathanasiou I, Polyzois G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an alternative framework material for removable dental prostheses: A Clinical Report. Journal of Prosthodontics. 2016;25:580–4.
  • 14. Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry. International Dental Research. 2018;8:84–92.
  • 15. Stawarczyk B, Thrun H, Eichberger M, Roos M, Edelhoff D, Schweiger J, et al. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J Prosthet Dent. 2015;114:666–73.
  • 16. Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M. The use of PEEK in digital prosthodontics: A narrative review. Vol. 20, BMC Oral Health 2020.
  • 17. Stawarczyk B, Keul C, Beuer F, Roos M, Schmidlin PR. Tensile bond strength of veneering resins to PEEK: Impact of different adhesives. Dent Mater J. 2013;32:441–8.
  • 18. Kanzow P, Wiegand A, Schwendicke F, Göstemeyer G. Same, same, but different? A systematic review of protocols for restoration repair. J Dent. 2019 ;86:1–16.
  • 19. Cabello-Domínguez G, Pérez-López J, Veiga-López B, González D, Revilla-León M. Maxillary zirconia and mandibular composite resin-lithium disilicateemodified PEEK fixed implant-supported restorations for a completely edentulous patient with an atrophic maxilla and mandible: A clinical report. J Prosthet Dent 2020;124:403-410
  • 20. Özden S, Demir H. Polieter-Eter-Keton (PEEK) Diş Hekimliğinde Yükselen Materyal Material Rising in Dentistry Poly-Ether-Ether-Ketone (PEEK) 2020.
  • 21. Rahmitasari F, Ishida Y, Kurahashi K, Matsuda T, Watanabe M, Ichikawa T. PEEK with reinforced materials and modifications for dental implant applications. Dentistry Journal 2017.
  • 22. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater. 2012;100 B:1044–52.
  • 23. Chen F, Gatea S, Ou H, Lu B, Long H. Fracture characteristics of PEEK at various stress triaxialities. J Mech Behav Biomed Mater. 2016;64:173–86.
  • 24. Benli M, Eker Gümüş B, Kahraman Y, Gökçen-Rohlig B, Evlioğlu G, Huck O, et al. Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers. Odontology. 2020;108:240–50.
  • 25. Zoidis P, Papathanasiou I, Polyzois G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. Journal of Prosthodontics. 2016;25:580–4.
  • 26. Brånemark PI, Breine U, Adell R, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand J Plast Reconstr Surg Hand Surg. 1969;3:81–100.
  • 27. Chen F, Gatea S, Ou H, Lu B, Long H. Fracture characteristics of PEEK at various stress triaxialities. J Mech Behav Biomed Mater. 2016;64:173–86.
  • 28. Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering1998.
  • 29. Hosoki M, Nishigawa K, Miyamoto Y, Ohe G, Matsuka Y. Allergic contact dermatitis caused by titanium screws and dental implants. J Prosthodont Res. 2016;60(3):213–9.
  • 30. Souza JCM, Pinho SS, Braz MP, Silva FS, Henriques B. Carbon fiber-reinforced PEEK in implant dentistry: A scoping review on the finite element method. Comput Methods Biomech Biomed Engin 2021;5:425-429.
  • 31. Kong N, Chen A, Yan W, Zhang H. Ceramic implant fracture: A clinical report.
  • 32. Özkurt Z, Kazazoǧlu E. Zirconia dental implants: A literature review. Vol. 37, Journal of Oral Implantology. 2011. p. 367–76.
  • 33. Kassem YM, Alshimy AM, El-Shabrawy SM. Mechanical evaluation of Polyetheretherketone Versus Zirconia. Vol. 44, Alexandria Dental Journal. 2019;44:61-66
  • 34. Rabiei A, Sandukas S. Processing and evaluation of bioactive coatings on polymeric implants. J Biomed Mater Res A. 2013;101 A:2621–9.
  • 35. Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, et al. Nano-hydroxyapatite-coated PEEK implants: A pilot study in rabbit bone. J Biomed Mater Res A. 2013;101A:465–71.
  • 36. Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: In vitro and in vivo studies. Int J Nanomedicine. 2012;7:1215–25.
  • 37. Suska F, Omar O, Emanuelsson L, Taylor M, Gruner P, Kinbrum A, et al. Enhancement of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: A rabbit model. J Biomater Appl. 2014;29:234–42.
  • 38. Poulsson AHC, Eglin D, Zeiter S, Camenisch K, Sprecher C, Agarwal Y, et al. Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials. 2014;35:3717–28.
  • 39. Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014 ;35:6758–75.
  • 40. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater. 2012;100 B:1044–52.
  • 41. Sarot JR, Contar CMM, Cruz ACC da, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010;21:2079–85.
  • 42. Koch FP, Weng D, Krämer S, Biesterfeld S, Jahn-Eimermacher A, Wagner W. Osseointegration of one-Piece zirconia implants compared with a titanium implant of identical design: A histomorphometric study in the dog. Clin Oral Implants Res. 2010;21:350–6.
  • 43. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Müller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech. 2015;48:1–7.
  • 44. Koutouzis T, Richardson J, Lundgren T. Comparative Soft and Hard Tissue Responses to Titanium and Polymer Healing Abutments. J Oral Implantol. 2011;37:174-182.
  • 45. Akan E, Velioğlu E, Çömlekoğlu M, Çömlekoğlu M. Fatigue and stress distribution analyses of ceramic-reinforced PEEK abutments restored with monolithic zirconia crowns as an alternative to conventional esthetic abutments. Int J Oral Maxillofac Implants. 2022;37:533–42.
  • 46. Atsü S, Aksan M, Bulut A. Fracture Resistance of titanium, zirconia, and ceramic-reinforced polyetheretherketone ımplant abutments supporting CAD/CAM monolithic lithium disilicate ceramic crowns after aging. Int J Oral Maxillofac Implants. 2019;34:622–30.
  • 47. Hahnel S, Wieser A, Lang R, Rosentritt M. Biofilm formation on the surface of modern implant abutment materials. Clin Oral Implants Res. 2015;26:1297–301.
  • 48. Jin H ying, Teng M hua, Wang Z jun, Li X, Liang J yue, Wang W xue, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. Journal of Prosthetic Dentistry. 2019;122:383–8.
  • 49. Brandt J, dent med, Lauer HC, Peter T, Brandt S. Digital process for an implant-supported fixed dental prosthesis: A clinical report. J Prosthet Dent 2015;114:469-73
  • 50. Mizumoto RM, Yilmaz B. Intraoral scan bodies in implant dentistry: A systematic review. J Prosthet Dent. 2018;3:343-352.
  • 51. Moreira AHJ, Rodrigues NF, Pinho ACM, Fonseca JC, Vilaça JL. Accuracy Comparison of impression techniques: A Systematic Review. Clinical Implant Dentistry and Related Research 2015. p. e751–64.
  • 52. Kim JH, Kim JH, Son KB da, Son KB da, Lee KB, Lee KB, et al. Displacement of scan body during screw tightening: A comparative in vitro study. Journal of Advanced Prosthodontics. 2020;12:307–15.
  • 53. Mangano F, Mangano C, Margiani B, Admakin O, Ardelean LC. Combining ıntraoral and face scans for the design and fabrication of computer-assisted design/computer-assisted manufacturing (CAD/CAM) polyether-ether-ketone (PEEK) implant-supported bars for maxillary overdentures. Scanning. 2019;4274715.
  • 54. Sharaf MY, Eskander A, Afify M. Novel PEEK retentive elements versus conventional retentive elements in mandibular overdentures: A Randomized Controlled Trial. Int J Dent. 2022:6947756.
  • 55. Galo Da Silva G, Vinicius M, Shimano W, Macedo AP, Lima Da Costa Valente M, Cândido A, et al. In vitro assessment of polyetheretherketone for an attachment component for an implant-retained overdenture. J Prosthet Dent. 2022;127:319.
  • 56. Alameldeen HE, Abdelbary SK. Effect of Polyetheretherketone (PEEK) as denture base material on peri-implant bone level changes in implant bar retained overdenture using CAD/CAM technology. Dental Journal 2019.
  • 57. Çetinkaya Numan, PEEK(Polietereterketon) altyapılı restorasyonlarda uygulanan farklı tamir yöntemlerinin bağlanma direnci etkinliğinin değerlendirilmesi (Diş Hekimliğinde Uzmanlık Tezi) Diyarbakır: Dicle Üniversitesi; 2020.
  • 58. Maló P, de Araújo Nobre M, Moura Guedes C, Almeida R, Silva A, Sereno N, et al. Short-term report of an ongoing prospective cohort study evaluating the outcome of full-arch implant-supported fixed hybrid polyetheretherketone-acrylic resin prostheses and the all-on-four concept. Clin Implant Dent Relat Res. 2018;20:692–702.
  • 59. Mostafa Ali S, Bahgat El Talawy D, Bahgat El Talawy DE. Clinical and radiographic outcomes of Poly-Etheretherketone (PEEK) hybrid prosthesis used for “all on four” rehabilitation of edentulous maxilla: A short-term case series study. Dental Journal 2019.
  • 60. Tipton P, Professor Paul Tipton examines the application of the high-performance polymer PEEK for CAD/CAM produced ful- arch implant retained prostheses. Clinical Excellence 2019.
  • 61. Tribst JPM, de Morais DC, de Matos JDM, Lopes G da RS, Dal Piva AM de O, Borges ALS, et al. Influence of framework material and posterior implant angulation in full-arch all-on-4 implant-supported prosthesis stress concentration. Dent J 2022;10(1).
  • 62. Dyeus MC, Tae-Ju O, Jungwha L, Carl EM, Hom-Lay W, Factors affecting late implant bone loss: a retrospective analysis. Int J Oral Maxillofac Implants 2007;22:117-26.
  • 63. Wang J, Wu P, Liu HL, Zhang L, Liu LP, Ma CF, et al. Polyetheretherketone versus titanium CAD-CAM framework for implant-supported fixed complete dentures: a retrospective study with up to 5-year follow-up. J Prosthodont Res. 2022;66:279–87.
  • 64. Sailer I, Strasding M, Valente NA, Zwahlen M, Liu S, Pjetursson BE. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clinical Oral Implants Research 2018. p. 184–98.
  • 65. Micovic Soldatovic D, Liebermann A, Huth KC, Stawarczyk B. Fracture load of different veneered and implant-supported 4-Unit cantilever PEEK fixed dental prostheses. J Mech Behav Biomed Mater. 2022;129:105173.
  • 66. López-Suárez C, Castillo-Oyagüe R, Rodríguez-Alonso V, Lynch CD, Suárez-García MJ. Fracture load of metal-ceramic, monolithic, and bi-layered zirconia-based posterior fixed dental prostheses after thermo-mechanical cycling. J Dent. 2018;73:97–104.
  • 67. Tabatabaian F, Dalirani S, Namdari M. Effect of thickness of zirconia ceramic on its masking ability: An in vitro study. Journal of Prosthodontics. 2019;28:666–71.
  • 68. Poggio CE, Ercoli C, Rispoli L, Maiorana C, Esposito M. Metal-free materials for fixed prosthodontic restorations . Cochrane Database of Systematic Reviews 2017.
  • 69. Parmigiani-Izquierdo JM, Cabaña-Muñoz ME, Merino JJ, Sánchez-Pérez A. Zirconia implants and peek restorations for the replacement of upper molars. Int J Implant Dent. 2017;3(1).
  • 70. Tekin S, Demirci F,Bakir M, Fracture strength of different veneers on polyetheretherketone (PEEK) frameworks in implant-supported single crowns. Am J Dent 2022;35:167–71.

Polyetheretherketone (PEEK) in Dental Implantology: Traditional Review

Year 2023, , 611 - 617, 25.12.2023
https://doi.org/10.15311/selcukdentj.1238899

Abstract

With the ever-increasing interest in aesthetic restorations in today's dentistry, metal-free restorations similar natural tooth structure, biocompatible, with good mechanical and physical properties are more frequently preferred. Polyetheretherketone (PEEK), which is one of these materials, has a thermoplastic polymer structure and its use in dentistry has started to become widespread. PEEK is a semi-crystalline thermoplastic homopolymer with a two-phase linear chain structure consisting of aromatic ring and amorphous-crystalline phase connected to each other by ketone and ether functional groups, with a density of 1.3-1.5 g/cm3. PEEK material has properties such as being biocompatible, elastic modulus closer to bone, shock absorption, non-corrosion, high wear and fracture resistance, low plaque uptake, and being a lighter material than metal restorations. PEEK material remains stable in the human body due to its thermal properties. It is resistant to high temperatures and is suitable for many sterilization methods. It is a chemically inert material. For this reason, it has a low reaction to other materials and is insoluble in many conventional solutions. The rate of allergic reaction against PEEK material is low. Therefore, it is a good alternative for patients with metal allergies. This material in dentistry; implant material, implant abutment material, as a digital impression post on the implant, as a precision connection piece in implant supported overdenture prostheses, framework material in implant hybrid prostheses, healing cap material, framework material in fixed prostheses, temporary crown material, framework and clasp material in removable partial prostheses, occlusal splint material as can be used.

Keywords: Dental Implants, Dental Prosthesis, Polyetheretherketone

References

  • 1. Blanch-Martínez N, Arias-Herrera S, Martínez-González A. Behavior of polyether-ether-ketone (PEEK) in prostheses on dental implants. J Clin Exp Dent. 2021;13:520–6.
  • 2. Zoidis P, Papathanasiou I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. J Prosthet Dent. 2016 ;116:637–41.
  • 3. Kumar D, Rajmohan T, Venkatachalapathi S. Wear behavior of PEEK matrix composites: A Review. Materials Today: Proceedings, 2018.
  • 4. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007:4845–69.
  • 5. Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry. International Dental Research 2018;8:84–92.
  • 6. Schwitalla A, Müller WD. PEEK dental implants: A review of the literatüre. Journal of Oral Implantology. 2013. p. 743–9.
  • 7. Schwitalla AD, Abou-Emara M, Zimmermann T, Spintig T, Beuer F, Lackmann J, et al. The applicability of PEEK-based abutment screws. J Mech Behav Biomed Mater. 2016;63:244–51.
  • 8. Nobre M de A, Guedes CM, Almeida R, Silva A, Sereno N. Hybrid polyetheretherketone (PEEK)–acrylic resin prostheses and the all-on-4 concept: A full-arch implant-supported fixed solution with 3 years of follow-up. J Clin Med. 2020;9:1–18.
  • 9. K Emera R, Altonbary G, Elbashir S. Comparison between all zirconia, all PEEK, and zirconia-PEEK telescopic attachments for two implants retained mandibular complete overdentures: In vitro stress analysis study. Journal of Dental Implants. 2019;9:24.
  • 10. Simsiriwong J, Shrestha R, Shamsaei N, Lugo M, Moser RD. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK). J Mech Behav Biomed Mater. 2015;51:388–97.
  • 11. Kewekordes T, Wille S, Kern M. Wear of polyetherketoneketones — Influence of titanium dioxide content and antagonistic material. Dental Materials. 2018;34:560–7.
  • 12. Zoidis P, Papathanasiou I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. Journal of Prosthetic Dentistry. 2016;116:637–41.
  • 13. Zoidis P, Papathanasiou I, Polyzois G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an alternative framework material for removable dental prostheses: A Clinical Report. Journal of Prosthodontics. 2016;25:580–4.
  • 14. Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry. International Dental Research. 2018;8:84–92.
  • 15. Stawarczyk B, Thrun H, Eichberger M, Roos M, Edelhoff D, Schweiger J, et al. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J Prosthet Dent. 2015;114:666–73.
  • 16. Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M. The use of PEEK in digital prosthodontics: A narrative review. Vol. 20, BMC Oral Health 2020.
  • 17. Stawarczyk B, Keul C, Beuer F, Roos M, Schmidlin PR. Tensile bond strength of veneering resins to PEEK: Impact of different adhesives. Dent Mater J. 2013;32:441–8.
  • 18. Kanzow P, Wiegand A, Schwendicke F, Göstemeyer G. Same, same, but different? A systematic review of protocols for restoration repair. J Dent. 2019 ;86:1–16.
  • 19. Cabello-Domínguez G, Pérez-López J, Veiga-López B, González D, Revilla-León M. Maxillary zirconia and mandibular composite resin-lithium disilicateemodified PEEK fixed implant-supported restorations for a completely edentulous patient with an atrophic maxilla and mandible: A clinical report. J Prosthet Dent 2020;124:403-410
  • 20. Özden S, Demir H. Polieter-Eter-Keton (PEEK) Diş Hekimliğinde Yükselen Materyal Material Rising in Dentistry Poly-Ether-Ether-Ketone (PEEK) 2020.
  • 21. Rahmitasari F, Ishida Y, Kurahashi K, Matsuda T, Watanabe M, Ichikawa T. PEEK with reinforced materials and modifications for dental implant applications. Dentistry Journal 2017.
  • 22. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater. 2012;100 B:1044–52.
  • 23. Chen F, Gatea S, Ou H, Lu B, Long H. Fracture characteristics of PEEK at various stress triaxialities. J Mech Behav Biomed Mater. 2016;64:173–86.
  • 24. Benli M, Eker Gümüş B, Kahraman Y, Gökçen-Rohlig B, Evlioğlu G, Huck O, et al. Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers. Odontology. 2020;108:240–50.
  • 25. Zoidis P, Papathanasiou I, Polyzois G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. Journal of Prosthodontics. 2016;25:580–4.
  • 26. Brånemark PI, Breine U, Adell R, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand J Plast Reconstr Surg Hand Surg. 1969;3:81–100.
  • 27. Chen F, Gatea S, Ou H, Lu B, Long H. Fracture characteristics of PEEK at various stress triaxialities. J Mech Behav Biomed Mater. 2016;64:173–86.
  • 28. Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering1998.
  • 29. Hosoki M, Nishigawa K, Miyamoto Y, Ohe G, Matsuka Y. Allergic contact dermatitis caused by titanium screws and dental implants. J Prosthodont Res. 2016;60(3):213–9.
  • 30. Souza JCM, Pinho SS, Braz MP, Silva FS, Henriques B. Carbon fiber-reinforced PEEK in implant dentistry: A scoping review on the finite element method. Comput Methods Biomech Biomed Engin 2021;5:425-429.
  • 31. Kong N, Chen A, Yan W, Zhang H. Ceramic implant fracture: A clinical report.
  • 32. Özkurt Z, Kazazoǧlu E. Zirconia dental implants: A literature review. Vol. 37, Journal of Oral Implantology. 2011. p. 367–76.
  • 33. Kassem YM, Alshimy AM, El-Shabrawy SM. Mechanical evaluation of Polyetheretherketone Versus Zirconia. Vol. 44, Alexandria Dental Journal. 2019;44:61-66
  • 34. Rabiei A, Sandukas S. Processing and evaluation of bioactive coatings on polymeric implants. J Biomed Mater Res A. 2013;101 A:2621–9.
  • 35. Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, et al. Nano-hydroxyapatite-coated PEEK implants: A pilot study in rabbit bone. J Biomed Mater Res A. 2013;101A:465–71.
  • 36. Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: In vitro and in vivo studies. Int J Nanomedicine. 2012;7:1215–25.
  • 37. Suska F, Omar O, Emanuelsson L, Taylor M, Gruner P, Kinbrum A, et al. Enhancement of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: A rabbit model. J Biomater Appl. 2014;29:234–42.
  • 38. Poulsson AHC, Eglin D, Zeiter S, Camenisch K, Sprecher C, Agarwal Y, et al. Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials. 2014;35:3717–28.
  • 39. Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014 ;35:6758–75.
  • 40. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater. 2012;100 B:1044–52.
  • 41. Sarot JR, Contar CMM, Cruz ACC da, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010;21:2079–85.
  • 42. Koch FP, Weng D, Krämer S, Biesterfeld S, Jahn-Eimermacher A, Wagner W. Osseointegration of one-Piece zirconia implants compared with a titanium implant of identical design: A histomorphometric study in the dog. Clin Oral Implants Res. 2010;21:350–6.
  • 43. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Müller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech. 2015;48:1–7.
  • 44. Koutouzis T, Richardson J, Lundgren T. Comparative Soft and Hard Tissue Responses to Titanium and Polymer Healing Abutments. J Oral Implantol. 2011;37:174-182.
  • 45. Akan E, Velioğlu E, Çömlekoğlu M, Çömlekoğlu M. Fatigue and stress distribution analyses of ceramic-reinforced PEEK abutments restored with monolithic zirconia crowns as an alternative to conventional esthetic abutments. Int J Oral Maxillofac Implants. 2022;37:533–42.
  • 46. Atsü S, Aksan M, Bulut A. Fracture Resistance of titanium, zirconia, and ceramic-reinforced polyetheretherketone ımplant abutments supporting CAD/CAM monolithic lithium disilicate ceramic crowns after aging. Int J Oral Maxillofac Implants. 2019;34:622–30.
  • 47. Hahnel S, Wieser A, Lang R, Rosentritt M. Biofilm formation on the surface of modern implant abutment materials. Clin Oral Implants Res. 2015;26:1297–301.
  • 48. Jin H ying, Teng M hua, Wang Z jun, Li X, Liang J yue, Wang W xue, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. Journal of Prosthetic Dentistry. 2019;122:383–8.
  • 49. Brandt J, dent med, Lauer HC, Peter T, Brandt S. Digital process for an implant-supported fixed dental prosthesis: A clinical report. J Prosthet Dent 2015;114:469-73
  • 50. Mizumoto RM, Yilmaz B. Intraoral scan bodies in implant dentistry: A systematic review. J Prosthet Dent. 2018;3:343-352.
  • 51. Moreira AHJ, Rodrigues NF, Pinho ACM, Fonseca JC, Vilaça JL. Accuracy Comparison of impression techniques: A Systematic Review. Clinical Implant Dentistry and Related Research 2015. p. e751–64.
  • 52. Kim JH, Kim JH, Son KB da, Son KB da, Lee KB, Lee KB, et al. Displacement of scan body during screw tightening: A comparative in vitro study. Journal of Advanced Prosthodontics. 2020;12:307–15.
  • 53. Mangano F, Mangano C, Margiani B, Admakin O, Ardelean LC. Combining ıntraoral and face scans for the design and fabrication of computer-assisted design/computer-assisted manufacturing (CAD/CAM) polyether-ether-ketone (PEEK) implant-supported bars for maxillary overdentures. Scanning. 2019;4274715.
  • 54. Sharaf MY, Eskander A, Afify M. Novel PEEK retentive elements versus conventional retentive elements in mandibular overdentures: A Randomized Controlled Trial. Int J Dent. 2022:6947756.
  • 55. Galo Da Silva G, Vinicius M, Shimano W, Macedo AP, Lima Da Costa Valente M, Cândido A, et al. In vitro assessment of polyetheretherketone for an attachment component for an implant-retained overdenture. J Prosthet Dent. 2022;127:319.
  • 56. Alameldeen HE, Abdelbary SK. Effect of Polyetheretherketone (PEEK) as denture base material on peri-implant bone level changes in implant bar retained overdenture using CAD/CAM technology. Dental Journal 2019.
  • 57. Çetinkaya Numan, PEEK(Polietereterketon) altyapılı restorasyonlarda uygulanan farklı tamir yöntemlerinin bağlanma direnci etkinliğinin değerlendirilmesi (Diş Hekimliğinde Uzmanlık Tezi) Diyarbakır: Dicle Üniversitesi; 2020.
  • 58. Maló P, de Araújo Nobre M, Moura Guedes C, Almeida R, Silva A, Sereno N, et al. Short-term report of an ongoing prospective cohort study evaluating the outcome of full-arch implant-supported fixed hybrid polyetheretherketone-acrylic resin prostheses and the all-on-four concept. Clin Implant Dent Relat Res. 2018;20:692–702.
  • 59. Mostafa Ali S, Bahgat El Talawy D, Bahgat El Talawy DE. Clinical and radiographic outcomes of Poly-Etheretherketone (PEEK) hybrid prosthesis used for “all on four” rehabilitation of edentulous maxilla: A short-term case series study. Dental Journal 2019.
  • 60. Tipton P, Professor Paul Tipton examines the application of the high-performance polymer PEEK for CAD/CAM produced ful- arch implant retained prostheses. Clinical Excellence 2019.
  • 61. Tribst JPM, de Morais DC, de Matos JDM, Lopes G da RS, Dal Piva AM de O, Borges ALS, et al. Influence of framework material and posterior implant angulation in full-arch all-on-4 implant-supported prosthesis stress concentration. Dent J 2022;10(1).
  • 62. Dyeus MC, Tae-Ju O, Jungwha L, Carl EM, Hom-Lay W, Factors affecting late implant bone loss: a retrospective analysis. Int J Oral Maxillofac Implants 2007;22:117-26.
  • 63. Wang J, Wu P, Liu HL, Zhang L, Liu LP, Ma CF, et al. Polyetheretherketone versus titanium CAD-CAM framework for implant-supported fixed complete dentures: a retrospective study with up to 5-year follow-up. J Prosthodont Res. 2022;66:279–87.
  • 64. Sailer I, Strasding M, Valente NA, Zwahlen M, Liu S, Pjetursson BE. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clinical Oral Implants Research 2018. p. 184–98.
  • 65. Micovic Soldatovic D, Liebermann A, Huth KC, Stawarczyk B. Fracture load of different veneered and implant-supported 4-Unit cantilever PEEK fixed dental prostheses. J Mech Behav Biomed Mater. 2022;129:105173.
  • 66. López-Suárez C, Castillo-Oyagüe R, Rodríguez-Alonso V, Lynch CD, Suárez-García MJ. Fracture load of metal-ceramic, monolithic, and bi-layered zirconia-based posterior fixed dental prostheses after thermo-mechanical cycling. J Dent. 2018;73:97–104.
  • 67. Tabatabaian F, Dalirani S, Namdari M. Effect of thickness of zirconia ceramic on its masking ability: An in vitro study. Journal of Prosthodontics. 2019;28:666–71.
  • 68. Poggio CE, Ercoli C, Rispoli L, Maiorana C, Esposito M. Metal-free materials for fixed prosthodontic restorations . Cochrane Database of Systematic Reviews 2017.
  • 69. Parmigiani-Izquierdo JM, Cabaña-Muñoz ME, Merino JJ, Sánchez-Pérez A. Zirconia implants and peek restorations for the replacement of upper molars. Int J Implant Dent. 2017;3(1).
  • 70. Tekin S, Demirci F,Bakir M, Fracture strength of different veneers on polyetheretherketone (PEEK) frameworks in implant-supported single crowns. Am J Dent 2022;35:167–71.
There are 70 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Review
Authors

Fatma Güneş 0000-0002-0230-2294

Mustafa Kocacıklı 0000-0002-2417-588X

Turan Korkmaz 0000-0002-2413-6979

Publication Date December 25, 2023
Submission Date January 18, 2023
Published in Issue Year 2023

Cite

Vancouver Güneş F, Kocacıklı M, Korkmaz T. Dental İmplantolojide Polietereterketon (PEEK): Geleneksel Derleme. Selcuk Dent J. 2023;10(3):611-7.