Review
BibTex RIS Cite

Yüksek Translüsent Monolitik Zirkonya Materyallerinin Optik ve Mekanik Özellikleri

Year 2024, , 96 - 102, 26.04.2024
https://doi.org/10.15311/selcukdentj.1276906

Abstract

Bu çalışmanın amacı, günümüzde son derece popüler olan yüksek translusensiye sahip monolitik zirkonya restoratif materyallerin mekanik ve optik özelliklerine dair sistematik bir derleme yapmaktı. Bu bağlamda MeSH, NIH-PubMed ve Google Academics elektronik veri tabanlarından “high translucent zirconia”, “optical properties”, “mechanical properties”, “translucency parameter”, “opalescence”, “fracture strength”, “toughness” anahtar kelimeleri kullanılarak elde edilen makaleleri derleyebilmek için elektronik arama yapıldı. Arama sonucunda tam metnine ulaşılan orijinal bilimsel makaleler veya derlemeler değerlendirmeye alındı. Buna karşın konuyla ilgili editörlere mektuplar, başyazılar ve kongre özetleri analiz dışı bırakıldı. Değerlendirmeye alınan makaleler incelendiğinde monolitik zirkonya restorasyonların optik özelliklerini iyileştirmek için materyale ait kompozisyon, yapı ve üretim yöntemlerinde pek çok modifikasyon yapılarak doğal dişle daha uyumlu estetik monolitik zirkonya seramiklerin üretildiği görülmüştür. Ancak optik özelliklerin iyileştirilmesi için yapılan işlemlerin materyalin mekanik özelliklerinde de değişikliklere sebep olduğu bilgisine ulaşılmıştır. Bu doğrultuda, yüksek translusent monolitik zirkonyaların optik ve mekanik özelliklerinin hekimler tarafından bilinmesi, klinik pratiğinde vaka için en uygun materyalin seçimi için büyük önem arz etmektedir.

Ethical Statement

Bu makale, sempozyum ya da kongrede sunulan bir tebliğin içeriği geliştirilerek ve kısmen değiştirilerek üretilmemiştir. Bu çalışma, yüksek lisans ya da doktora tezi esas alınarak hazırlanmamıştır. Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur.

Supporting Institution

Yok

Project Number

Yok

References

  • 1. Alqutaibi AY, Ghulam O, Krsoum M, Binmahmoud S, Taher H, Elmalky W, et al. Revolution of current dental zirconia: A comprehensive review. Molecules. 2022;27:1699.
  • 2. Şen N, Ölçer Us Y, Turp V, Şen D. Monolitik zirkonya. Turkiye Klinikleri J Prosthodont-Special Topics. 2017;3:127-32.
  • 3. Durkan R, Deste G, Şimşek H. Monolitik zirkonya seramik sistemlerinin üretim tipleri ile aşınma, optik ve estetik özellikleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2018;2:263-70.
  • 4. Manziuc M, Gasparik C, Negucioiu M, Constantiniuc M, Burde A, Vlas I, et al. Optical properties of translucent zirconia: A review of the literature. The EuroBiotech Journal. 2019;3:45-51.
  • 5. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012 Mar;8(3):1213-20.
  • 6. Pereira GKR, Venturini AB, Silvestri T, Dapieve KS, Montagner AF, Soares FZM, et al. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J Mech Behav Biomed Mater. 2015 Mar;55:151-63.
  • 7. Ban S. Chemical durability of high translucent dental zirconia. Dent Mater J. 2020;39:12-23.
  • 8. Tang Z, Zhao X, Wang H, Liu B. Clinical evaluation of monolithic zirconia crowns for posterior teeth restorations. Medicine (Baltimore). 2019;98:e17385.
  • 9. Turp V, Turkoglu P. Zirkonyanın yapısı. Turkiye Klinikleri J Prosthodont-Special Topics. 2017;3:77-83 .
  • 10. Ulu H, Bayındır F. Monolitik zirkonyum restorasyonlar. Atatürk Üniv. Diş Hek Fak Derg. 2016; 26:67-72.
  • 11. Erdinç G, Bülbül M, Özcan M. Fracture strength and energy-dispersive spectroscopy analysis of 3-unit fixed partial dentures fabricated from different monolithic zirconia materials. J Prosthet Dent. 2023:S0022-3913(23)00178-6. Basımda.
  • 12. Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD, Batista AUD, Zhang Y, Paskocimas CA, et al. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater. 2020;36:e126-39.
  • 13. Reale Reyes A, Dennison JB, Powers JM, Sierraalta M, Yaman P. Translucency and flexural strength of translucent zirconia ceramics. J Prosthet Dent. 2023;129:644-9.
  • 14. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, et al. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater. 2015;31:1180-7.
  • 15. Fidan M, Dereli Z. Translüsensi özelliğinin polisaj uygulanan kompozit rezinlerde CIELAB ve CIEDE renk sistemlerine göre karşılaştırılması. Selcuk Dent J. 2021;8:477-85.
  • 16. Cho MH, Seol HJ. Optical properties, microstructure, and phase fraction of multi-layered monolithic zirconia with and without yttria-gradient. Materials (Basel). 2022;16:41.
  • 17. Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: A review of new materials and processing methods. Braz Oral Res. 2017;31:e58.
  • 18. Bocam K, Anunmana C, Eiampongpaiboon T. Grain size, crystalline phase and fracture toughness of the monolithic zirconia. J Adv Prosthodont. 2022;14:285-93.
  • 19. Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater, 2002;50:4555–62.
  • 20. Lange FF. Transformation toughening. Pt 3: Experimental-observations in the ZrO2-Y2O3 system. J Mater Sci. 1982;17:240-6.
  • 21. Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia. Dent Mater. 2015;31:1487-92.
  • 22. Kontonasaki E, Rigos AE, Ilia C, Istantsos T. Monolithic zirconia: An update to current knowledge. optical properties, wear, and clinical performance. Dent J (Basel). 2019;7:90.
  • 23. Liao Y, Gruber M, Lukic H, Chen S, Megremis S. Fracture toughness of zirconia with a nanometer size notch fabricated using focused ion beam milling. J Biomed Mater Res B Appl Biomater. 2020;108:3323-30.
  • 24. Uwanyuze RS, Ramesh S, King MK, Lawson N, Mahapatra MK. Mechanical properties, translucency, and low temperature degradation (LTD) of yttria (3–6 mol%) stabilized zirconia. Ceramics Int. 2021;47:15868-74.
  • 25. Ziyad TA, Abu-Naba'a LA, Almohammed SN. Optical properties of CAD-CAM monolithic systems compared: three multi-layered zirconia and one lithium disilicate system. Heliyon. 2021;7:e08151.
  • 26. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32:e327-37.
  • 27. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res. 2018;97:140-7.
  • 28. Fiege CA. Vergleichende Untersuchung zur Kaustabilität von monolithischen Seitenzahnkronen aus Zirkoniumdioxid, Hybridkeramik und Komposit in-vitro. [thesis] Gießen: Universität Gießen; 2020.
  • 29. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120:132-7.
  • 30. Kim HK. Optical and mechanical properties of highly translucent dental zirconia. Materials (Basel). 2020;13:3395.
  • 31. Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014;72:145-53.
  • 32. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28:449-56.
  • 33. Höland W, Schweiger M, Watzke R, Peschke A, Kappert H. Ceramics as biomaterials for dental restoration. Expert Rev Med Devices. 2008;5:729-45.
  • 34. Fischer J, Stawarczyk B, Hämmerle CH. Flexural strength of veneering ceramics for zirconia. J Dent. 2008;36:316-21.
  • 35. Zesewitz TF, Knauber AW, Nothdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: An in vitro study. Int J Prosthodont. 2014;27:264-6.
  • 36. Shahmiri R, Standard OC, Hart JN, Sorrell CC. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J Prosthet Dent. 2018;119:36-46.
  • 37. Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont. 2016;8:37-42.
  • 38. Antonson SA, Anusavice KJ. Contrast ratio of veneering and core ceramics as a function of thickness. Int J Prosthodont. 2001;14:316-20.
  • 39. Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and "augmented translucency" zirconia for CEREC CAD/CAM system. J Esthet Restor Dent. 2016;28:S32-9.
  • 40. Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater. 2016;59:128-38.
  • 41. Kim MJ, Kim KH, Kim YK, Kwon TY. Degree of conversion of two dual-cured resin cements light-irradiated through zirconia ceramic disks. J Adv Prosthodont. 2013;5:464-70.
  • 42. Tsuyuki Y, Sato T, Nomoto S, Yotsuya M, Koshihara T, Takemoto S, et al. Effect of occlusal groove on abutment, crown thickness, and cement-type on fracture load of monolithic zirconia crowns. Dent Mater J. 2018;37:843-50.
  • 43. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30:1195-203.
  • 44. van de Hulst, HC. Light scattering by small particles. New York: John Wiley and Sons, Inc; 1957.
  • 45. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and ımplications for biomedical ımplants. Annu. Rev. Mater. Res. 2007;37:1-32.
  • 46. Yoshimura M, Noma T, Kawabata K, Sōmiya S. Role of H2O on the degradation process of Y-TZP. In: Sōmiya, S. (eds) Hydrothermal Reactions for Materials Science and Engineering. Dordrecht: Springer, 1989.
  • 47. Hao CC, Muchtar A, Azhari CH, Razali M, Aboras M. Influence of sintering temperature on translucency of yttria-stabilized zirconia for dental crown applications. Jurnal Teknologie, 2016;78:13-8.
  • 48. Sabet H, Wahsh M, Sherif A, Salah T. Effect of different immersion times and sintering temperatures on translucency of monolithic nanocrystalline zirconia, Future Dent J. 2018;4:84-9.
  • 49. Pekkan G, Pekkan K, Bayindir BÇ, Özcan M, Karasu B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent Mater J. 2020;39:1-8.
  • 50. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med. 2011;22:2429-35.
  • 51. Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int, 2002;28:785-9.
  • 52. Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent. 2019;31:423-30.
  • 53. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013;17:269-74.
  • 54. Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent. 2018;119:308e1-7.
  • 55. Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater Res B Appl Biomater. 2008;87:329-37.
  • 56. Tuncel, I., Eroglu, E., Sari, T., Usumez, A. The effect of coloring liquids on the translucency of zirconia framework. J Adv Prosthodont. 2013;5(4):448-51.
  • 57. Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L. Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. J Prosthet Dent. 2017;118:216-20.
  • 58. Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent. 2016;115:773-9.
  • 59. Yin R, Lee MH, Bae TS, Song KY. Effect of finishing condition on fracture strength of monolithic zirconia crowns. Dent Mater J. 2019;38:203-10.
  • 60. Nam MG, Park MG. Changes in the flexural strength of translucent zirconia due to glazing and low-temperature degradation. J Prosthet Dent. 2018;120:969e1-6.
  • 61. Gu XH, Kern M. Marginal discrepancies and leakage of all-ceramic crowns: influence of luting agents and aging conditions. Int J Prosthodont. 2003;16:109-16.
  • 62. Malkondu O, Tinastepe N, Kazazoglu E. Influence of type of cement on the color and translucency of monolithic zirconia. J Prosthet Dent. 2016;116:902-8.
  • 63. Attia A. Bond strength of three luting agents to zirconia ceramic - influence of surface treatment and thermocycling. J Appl Oral Sci. 2011;19:388-95.
  • 64. Burke FJ, Fleming GJ, Nathanson D, Marquis PM. Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent. 2002;4:7-22.
  • 65. Harada K, Raigrodski AJ, Chung KH, Flinn BD, Dogan S, Mancl LA. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthet Dent. 2016;116:257-63.
  • 66. Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater. 2018;34:879-90.
  • 67. Kou W, Garbrielsson K, Borhani A, Carlborg M, Molin Thorén M. The effects of artificial aging on high translucent zirconia. Biomater Investig Dent. 2019;6:54-60.
  • 68. Erdinç G, Bülbül M. Effect of mastication simulation on the phase transformation of posterior 3-unit monolithic zirconia fixed dental prostheses. J Prosthet Dent. 2021;126:794.e1-6.
  • 69. Prado PHCO, Monteiro JB, Campos TMB, Thim GP, de Melo RM. Degradation kinetics of high-translucency dental zirconias: Mechanical properties and in-depth analysis of phase transformation. J Mech Behav Biomed Mater. 2020;102:103482.
  • 70. Pereira GKR, Muller C, Wandscher VF, Rippe MP, Kleverlaan CJ, Valandro LF. Comparison of different low-temperature aging protocols: Its effects on the mechanical behavior of Y-TZP ceramics. J Mech Behav Biomed Mater. 2016;60:324-30.
  • 71. Alghazzawi TF. The effect of extended aging on the optical properties of different zirconia materials. J Prosthodont Res. 2017;61:305-14.

Optical and Mechanical Properties of High Translucent Monolithic Zirconia Materials

Year 2024, , 96 - 102, 26.04.2024
https://doi.org/10.15311/selcukdentj.1276906

Abstract

The aim of this study was to make a systematic review of the mechanical and optical properties of highly popular high-translucent monolithic zirconia restorative materials. In this context, the data obtained from MeSH, NIH-PubMed and Google Academics electronic databases using the keywords “high translucent zirconia”, “monolithic zirconia”, “optical properties”, “mechanical properties”, “translucency parameter”, “opalescence”, “fracture strength”, “toughness”. An electronic search was performed to compile the articles. The original research articles or reviews found in the search were evaluated. On the other hand, letters to the editors, editorials and congress abstracts were excluded from the analysis. When the evaluated articles were examined, it was seen that aesthetic monolithic zirconia ceramics, compatible with natural teeth, were produced by making many modifications in the composition, structure and production methods of the material in order to improve the optical properties of monolithic zirconia restorations. However, it was found that the processes performed to improve the optical properties also cause changes in the mechanical properties of the material. In this respect, knowing the optical and mechanical properties of high translucent monolithic zirconia by physicians is of great importance for the selection of the most appropriate materials for the patients in clinical practice.
Keywords: Monolithic zirconia, Optical properties, Mechanical properties

Ethical Statement

This article is not the version of a presentation. This article has not been prepared on the basis of a master’s/ doctoral thesis. It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited are stated in the bibliography.

Project Number

Yok

References

  • 1. Alqutaibi AY, Ghulam O, Krsoum M, Binmahmoud S, Taher H, Elmalky W, et al. Revolution of current dental zirconia: A comprehensive review. Molecules. 2022;27:1699.
  • 2. Şen N, Ölçer Us Y, Turp V, Şen D. Monolitik zirkonya. Turkiye Klinikleri J Prosthodont-Special Topics. 2017;3:127-32.
  • 3. Durkan R, Deste G, Şimşek H. Monolitik zirkonya seramik sistemlerinin üretim tipleri ile aşınma, optik ve estetik özellikleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2018;2:263-70.
  • 4. Manziuc M, Gasparik C, Negucioiu M, Constantiniuc M, Burde A, Vlas I, et al. Optical properties of translucent zirconia: A review of the literature. The EuroBiotech Journal. 2019;3:45-51.
  • 5. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012 Mar;8(3):1213-20.
  • 6. Pereira GKR, Venturini AB, Silvestri T, Dapieve KS, Montagner AF, Soares FZM, et al. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J Mech Behav Biomed Mater. 2015 Mar;55:151-63.
  • 7. Ban S. Chemical durability of high translucent dental zirconia. Dent Mater J. 2020;39:12-23.
  • 8. Tang Z, Zhao X, Wang H, Liu B. Clinical evaluation of monolithic zirconia crowns for posterior teeth restorations. Medicine (Baltimore). 2019;98:e17385.
  • 9. Turp V, Turkoglu P. Zirkonyanın yapısı. Turkiye Klinikleri J Prosthodont-Special Topics. 2017;3:77-83 .
  • 10. Ulu H, Bayındır F. Monolitik zirkonyum restorasyonlar. Atatürk Üniv. Diş Hek Fak Derg. 2016; 26:67-72.
  • 11. Erdinç G, Bülbül M, Özcan M. Fracture strength and energy-dispersive spectroscopy analysis of 3-unit fixed partial dentures fabricated from different monolithic zirconia materials. J Prosthet Dent. 2023:S0022-3913(23)00178-6. Basımda.
  • 12. Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD, Batista AUD, Zhang Y, Paskocimas CA, et al. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater. 2020;36:e126-39.
  • 13. Reale Reyes A, Dennison JB, Powers JM, Sierraalta M, Yaman P. Translucency and flexural strength of translucent zirconia ceramics. J Prosthet Dent. 2023;129:644-9.
  • 14. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, et al. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater. 2015;31:1180-7.
  • 15. Fidan M, Dereli Z. Translüsensi özelliğinin polisaj uygulanan kompozit rezinlerde CIELAB ve CIEDE renk sistemlerine göre karşılaştırılması. Selcuk Dent J. 2021;8:477-85.
  • 16. Cho MH, Seol HJ. Optical properties, microstructure, and phase fraction of multi-layered monolithic zirconia with and without yttria-gradient. Materials (Basel). 2022;16:41.
  • 17. Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: A review of new materials and processing methods. Braz Oral Res. 2017;31:e58.
  • 18. Bocam K, Anunmana C, Eiampongpaiboon T. Grain size, crystalline phase and fracture toughness of the monolithic zirconia. J Adv Prosthodont. 2022;14:285-93.
  • 19. Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater, 2002;50:4555–62.
  • 20. Lange FF. Transformation toughening. Pt 3: Experimental-observations in the ZrO2-Y2O3 system. J Mater Sci. 1982;17:240-6.
  • 21. Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia. Dent Mater. 2015;31:1487-92.
  • 22. Kontonasaki E, Rigos AE, Ilia C, Istantsos T. Monolithic zirconia: An update to current knowledge. optical properties, wear, and clinical performance. Dent J (Basel). 2019;7:90.
  • 23. Liao Y, Gruber M, Lukic H, Chen S, Megremis S. Fracture toughness of zirconia with a nanometer size notch fabricated using focused ion beam milling. J Biomed Mater Res B Appl Biomater. 2020;108:3323-30.
  • 24. Uwanyuze RS, Ramesh S, King MK, Lawson N, Mahapatra MK. Mechanical properties, translucency, and low temperature degradation (LTD) of yttria (3–6 mol%) stabilized zirconia. Ceramics Int. 2021;47:15868-74.
  • 25. Ziyad TA, Abu-Naba'a LA, Almohammed SN. Optical properties of CAD-CAM monolithic systems compared: three multi-layered zirconia and one lithium disilicate system. Heliyon. 2021;7:e08151.
  • 26. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32:e327-37.
  • 27. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res. 2018;97:140-7.
  • 28. Fiege CA. Vergleichende Untersuchung zur Kaustabilität von monolithischen Seitenzahnkronen aus Zirkoniumdioxid, Hybridkeramik und Komposit in-vitro. [thesis] Gießen: Universität Gießen; 2020.
  • 29. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent. 2018;120:132-7.
  • 30. Kim HK. Optical and mechanical properties of highly translucent dental zirconia. Materials (Basel). 2020;13:3395.
  • 31. Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014;72:145-53.
  • 32. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28:449-56.
  • 33. Höland W, Schweiger M, Watzke R, Peschke A, Kappert H. Ceramics as biomaterials for dental restoration. Expert Rev Med Devices. 2008;5:729-45.
  • 34. Fischer J, Stawarczyk B, Hämmerle CH. Flexural strength of veneering ceramics for zirconia. J Dent. 2008;36:316-21.
  • 35. Zesewitz TF, Knauber AW, Nothdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: An in vitro study. Int J Prosthodont. 2014;27:264-6.
  • 36. Shahmiri R, Standard OC, Hart JN, Sorrell CC. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J Prosthet Dent. 2018;119:36-46.
  • 37. Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont. 2016;8:37-42.
  • 38. Antonson SA, Anusavice KJ. Contrast ratio of veneering and core ceramics as a function of thickness. Int J Prosthodont. 2001;14:316-20.
  • 39. Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and "augmented translucency" zirconia for CEREC CAD/CAM system. J Esthet Restor Dent. 2016;28:S32-9.
  • 40. Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater. 2016;59:128-38.
  • 41. Kim MJ, Kim KH, Kim YK, Kwon TY. Degree of conversion of two dual-cured resin cements light-irradiated through zirconia ceramic disks. J Adv Prosthodont. 2013;5:464-70.
  • 42. Tsuyuki Y, Sato T, Nomoto S, Yotsuya M, Koshihara T, Takemoto S, et al. Effect of occlusal groove on abutment, crown thickness, and cement-type on fracture load of monolithic zirconia crowns. Dent Mater J. 2018;37:843-50.
  • 43. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30:1195-203.
  • 44. van de Hulst, HC. Light scattering by small particles. New York: John Wiley and Sons, Inc; 1957.
  • 45. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and ımplications for biomedical ımplants. Annu. Rev. Mater. Res. 2007;37:1-32.
  • 46. Yoshimura M, Noma T, Kawabata K, Sōmiya S. Role of H2O on the degradation process of Y-TZP. In: Sōmiya, S. (eds) Hydrothermal Reactions for Materials Science and Engineering. Dordrecht: Springer, 1989.
  • 47. Hao CC, Muchtar A, Azhari CH, Razali M, Aboras M. Influence of sintering temperature on translucency of yttria-stabilized zirconia for dental crown applications. Jurnal Teknologie, 2016;78:13-8.
  • 48. Sabet H, Wahsh M, Sherif A, Salah T. Effect of different immersion times and sintering temperatures on translucency of monolithic nanocrystalline zirconia, Future Dent J. 2018;4:84-9.
  • 49. Pekkan G, Pekkan K, Bayindir BÇ, Özcan M, Karasu B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent Mater J. 2020;39:1-8.
  • 50. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med. 2011;22:2429-35.
  • 51. Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int, 2002;28:785-9.
  • 52. Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent. 2019;31:423-30.
  • 53. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013;17:269-74.
  • 54. Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent. 2018;119:308e1-7.
  • 55. Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater Res B Appl Biomater. 2008;87:329-37.
  • 56. Tuncel, I., Eroglu, E., Sari, T., Usumez, A. The effect of coloring liquids on the translucency of zirconia framework. J Adv Prosthodont. 2013;5(4):448-51.
  • 57. Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L. Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. J Prosthet Dent. 2017;118:216-20.
  • 58. Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent. 2016;115:773-9.
  • 59. Yin R, Lee MH, Bae TS, Song KY. Effect of finishing condition on fracture strength of monolithic zirconia crowns. Dent Mater J. 2019;38:203-10.
  • 60. Nam MG, Park MG. Changes in the flexural strength of translucent zirconia due to glazing and low-temperature degradation. J Prosthet Dent. 2018;120:969e1-6.
  • 61. Gu XH, Kern M. Marginal discrepancies and leakage of all-ceramic crowns: influence of luting agents and aging conditions. Int J Prosthodont. 2003;16:109-16.
  • 62. Malkondu O, Tinastepe N, Kazazoglu E. Influence of type of cement on the color and translucency of monolithic zirconia. J Prosthet Dent. 2016;116:902-8.
  • 63. Attia A. Bond strength of three luting agents to zirconia ceramic - influence of surface treatment and thermocycling. J Appl Oral Sci. 2011;19:388-95.
  • 64. Burke FJ, Fleming GJ, Nathanson D, Marquis PM. Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent. 2002;4:7-22.
  • 65. Harada K, Raigrodski AJ, Chung KH, Flinn BD, Dogan S, Mancl LA. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthet Dent. 2016;116:257-63.
  • 66. Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater. 2018;34:879-90.
  • 67. Kou W, Garbrielsson K, Borhani A, Carlborg M, Molin Thorén M. The effects of artificial aging on high translucent zirconia. Biomater Investig Dent. 2019;6:54-60.
  • 68. Erdinç G, Bülbül M. Effect of mastication simulation on the phase transformation of posterior 3-unit monolithic zirconia fixed dental prostheses. J Prosthet Dent. 2021;126:794.e1-6.
  • 69. Prado PHCO, Monteiro JB, Campos TMB, Thim GP, de Melo RM. Degradation kinetics of high-translucency dental zirconias: Mechanical properties and in-depth analysis of phase transformation. J Mech Behav Biomed Mater. 2020;102:103482.
  • 70. Pereira GKR, Muller C, Wandscher VF, Rippe MP, Kleverlaan CJ, Valandro LF. Comparison of different low-temperature aging protocols: Its effects on the mechanical behavior of Y-TZP ceramics. J Mech Behav Biomed Mater. 2016;60:324-30.
  • 71. Alghazzawi TF. The effect of extended aging on the optical properties of different zirconia materials. J Prosthodont Res. 2017;61:305-14.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Review
Authors

Gözdenur Melike Görgülü 0000-0003-4283-5527

Ferhan Egilmez 0000-0001-9325-8761

Project Number Yok
Publication Date April 26, 2024
Submission Date April 4, 2023
Published in Issue Year 2024

Cite

Vancouver Görgülü GM, Egilmez F. Yüksek Translüsent Monolitik Zirkonya Materyallerinin Optik ve Mekanik Özellikleri. Selcuk Dent J. 2024;11(1):96-102.