Research Article
BibTex RIS Cite

İki farklı rezin modifiye cam iyonomer simanın bölgesel toksisitesinin değerlendirilmesi

Year 2020, Volume: 7 Issue: 3, 413 - 421, 27.12.2020
https://doi.org/10.15311/selcukdentj.676906

Abstract

Amaç: Bu çalışmanın iki farklı rezin modifiye cam iyonomer simanın bölgesel toksisitesini değerlendirmektir.
Gereç ve yöntemler: Fuji II LC Capsule (GC) ve Vitrebond (3M ESPE) örnekleri üreticilerinin talimatlarına göre standart teflon disklerde hazırlandı. Örnekler, örnek/solüsyon hacmi 91,6mm2/ml olacak şekilde 24 saat kültür ortamında bekletildi. L929 hücreleri 96 kuyucuklu hücre kültür kaplarına alındı ve 24 saat 37C°'de %10 FBS ve %1 penisilin/streptomisin içeren DMEM (Dulbecco's Modified Eagle's Medium) kültür ortamında bekletildi. Elde edilen materyallerin seyreltilmemiş ekstraktı ve 1/2, 1/4, 1/8, 1/16, 1/32 oranında seyreltilmiş olan ekstraktları hücrelere uygulandı. Hücre canlılığı 24. saatin sonunda XTT (2,3-Bis(2-metoksi-4-nitro-5-sulfofenil)-2H-tetrazolyum) testi ile belirlendi. Kontrol grubunun canlılığı %100 olacak şekilde kabul edildi ve tüm grupların canlılık yüzdesi buna göre belirlendi (n=27). İstatistiksel değerlendirmeler için one way ANOVA ve post hoc Tukey's HSD testleri kullanıldı. Her bir materyalin L929 hücrelerinin canlılıklarına ve proliferasyonlarına nasıl etki ettiği gerçek zamanlı hücre analizi yöntemi ile 15 dakikada bir empedans ölçümü alınarak izlendi. Elde edilen verilerin analizi RTCA Software 2.0 programı ile gerçekleştirildi, istatistiksel olarak hiyerarşik kümeleme analizi yapıldı.
Bulgular: XTT deneyi sonucunda Fuji II LC’nin seyreltilmemiş konsantrasyonu, Vitrebond’un ise seyreltilmemiş, 1/2 ve 1/4 oranında seyreltilmiş konsantrasyonlarının L929 fibroblast hücreleri üzerine sitotoksik etkileri olduğu izlendi (p<0,05). Gerçek zamanlı hücre analiz deneyi sonuçlarına göre Fuji II LC Capsule’ün seyreltilmemiş konsantrasyon grubunda, Vitrebond’un ise seyreltilmemiş, 1/2, 1/4 ve 1/8 konsantrasyon gruplarında hücre canlılığının 144. saat sonunda tamamen kaybolduğu görülmüştür.
Sonuç: Rezin modifiye cam iyonomer simanlar pulpa hücrelerinin metabolizmasını değiştirebilecek sitotoksik potansiyele sahip olabilir. Bu nedenle özellikle derin kavitelerde materyal seçimine dikkat edilmelidir.

Supporting Institution

Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

17102032

References

  • 1. Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet. 2007;369(9555):51-9.
  • 2. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-53.
  • 3. Bates MN, Fawcett J, Garrett N, Cutress T, Kjellstrom T. Health effects of dental amalgam exposure: a retrospective cohort study. International Journal of Epidemiology. 2004;33(4):894-902.
  • 4. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine reviews. 2009;30(4):293-342.
  • 5. Kim D-A, Abo-Mosallam HA, Lee H-Y, Kim G-R, Kim H-W, Lee H-H. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses. Materials Science and Engineering: C. 2014;42:665-71.
  • 6. Ahlqwist M, Bengtsson C, Lapidus L. Number of amalgam fillings in relation to cardiovascular disease, diabetes, cancer and early death in Swedish women. Community dentistry and oral epidemiology. 1993;21(1):40-4.
  • 7. Shelnutt S, Kind J, Allaben W. Bisphenol A: Update on newly developed data and how they address NTP’s 2008 finding of “Some Concern”. Food and chemical toxicology. 2013;57:284-95.
  • 8. Kanjevac TV, Milovanović MZ, Milošević-Djordjević O, Tešić Ž, Ivanović M, Lukić A. Cytotoxicity of glass ionomer cement on human exfoliated deciduous teeth stem cells correlates with released fluoride, strontium and aluminum ion concentrations. Archives of biological sciences. 2015;67(2):619-30.
  • 9. Schmalz G, Bindslev DA. Biocompatibility of Dental Materials: Springer; 2009.
  • 10. Pameijer C, Stanley H. Primate pulp response to anhydrous Chembond. Journal of Dental Research. 1984;63:171-.
  • 11. Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, et al. Assay guidance manual. 2004.
  • 12. Gilbert DF, Friedrich O. Cell Viability Assays: Methods and Protocols: Springer New York; 2017.
  • 13. Bean TA, Zhuang WC, Tong PY, Eick JD, Chappelow CC, Yourtee DM. Comparison of tetrazolium colorimetric and 51Cr release assays for cytotoxicity determination of dental biomaterials. Dental Materials. 1995;11(5-6):327-31.
  • 14. Stevens MG, Olsen SC. Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. Journal of Immunological Methods. 1993;157(1-2):225-31.
  • 15. Parboosing R, Mzobe G, Chonco L, Moodley I. Cell-based assays for assessing toxicity: a basic guide. Medicinal Chemistry. 2017;13(1):13-21.
  • 16. Shelton R. Biocompatibility of Dental Biomaterials: Elsevier Science; 2016.
  • 17. Teng Z, Kuang X, Wang J, Zhang X. Real-time cell analysis–a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity. Journal of virological methods. 2013;193(2):364-70.
  • 18. Ozdemir A, Ark M. xCELLigence real time cell analysis system: a new method for cell proliferation and cytotoxicity. Niche. 2013;2(2).
  • 19. ACEA-Biosciences. xCELLigence RTCA SP and MP instruments broşürü. 2013.
  • 20. Tuncer S, Demirci M. Dental materyallerde biyouyumluluk değerlendirmeleri. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2011;2011(2).
  • 21. Schedle A, Samorapoompichit P, Rausch-Fan X, Franz A, Füreder W, Sperr W, et al. Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations. Journal of dental research. 1995;74(8):1513-20.
  • 22. Galić E, Tadin A, Galić N, Kašuba V, Mladinić M, Rozgaj R, et al. Micronucleus, alkaline, and human 8-oxoguanine glycosylase 1 modified comet assays evaluation of glass-ionomer cements-in vitro. Archives of Industrial Hygiene and Toxicology. 2014;65(2):179-88.
  • 23. Huang F-M, Chang Y-C. Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2002;94(3):361-5.
  • 24. Koulaouzidou EA, Papazisis KT, Economides NA, Beltes P, Kortsaris AH. Antiproliferative effect of mineral trioxide aggregate, zinc oxide-eugenol cement, and glass-ionomer cement against three fibroblastic cell lines. Journal of Endodontics. 2005;31(1):44-6.
  • 25. Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. Journal of dental research. 1998;77(12):2012-9.
  • 26. Ranjkesh B, Isidor F, Kraft DCE, Løvschall H. In vitro cytotoxic evaluation of novel fast-setting calcium silicate cement compositions and dental materials using colorimetric methyl-thiazolyl-tetrazolium assay. Journal of oral science. 2018;60(1):82-8.
  • 27. Kanjevac T, Milovanovic M, Volarevic V, L Lukic M, Arsenijevic N, Markovic D, et al. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release. Medicinal Chemistry. 2012;8(1):40-5.
  • 28. Selimović-Dragaš M, Huseinbegović A, Kobašlija S, Hatibović-Kofman Š. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements. Bosnian journal of basic medical sciences. 2012;12(4):273.
  • 29. Mendonça AAMd, Oliveira CFd, Hebling J, Costa CAdS. Influence of thicknesses of smear layer on the transdentinal cytotoxicity and bond strength of a resin-modified glass-ionomer cement. Brazilian dental journal. 2012;23(4):379-86.
  • 30. Schmalz G, Schmalz C, Rotgans J. Die Pulpaverträglichkeit eines Glasionomer-und eines Zinkoxiphosphat-Zementes. Deutsche Zahnärztliche Zeitschrift. 1986;41(9):806-12.
Year 2020, Volume: 7 Issue: 3, 413 - 421, 27.12.2020
https://doi.org/10.15311/selcukdentj.676906

Abstract

Project Number

17102032

References

  • 1. Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet. 2007;369(9555):51-9.
  • 2. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-53.
  • 3. Bates MN, Fawcett J, Garrett N, Cutress T, Kjellstrom T. Health effects of dental amalgam exposure: a retrospective cohort study. International Journal of Epidemiology. 2004;33(4):894-902.
  • 4. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine reviews. 2009;30(4):293-342.
  • 5. Kim D-A, Abo-Mosallam HA, Lee H-Y, Kim G-R, Kim H-W, Lee H-H. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses. Materials Science and Engineering: C. 2014;42:665-71.
  • 6. Ahlqwist M, Bengtsson C, Lapidus L. Number of amalgam fillings in relation to cardiovascular disease, diabetes, cancer and early death in Swedish women. Community dentistry and oral epidemiology. 1993;21(1):40-4.
  • 7. Shelnutt S, Kind J, Allaben W. Bisphenol A: Update on newly developed data and how they address NTP’s 2008 finding of “Some Concern”. Food and chemical toxicology. 2013;57:284-95.
  • 8. Kanjevac TV, Milovanović MZ, Milošević-Djordjević O, Tešić Ž, Ivanović M, Lukić A. Cytotoxicity of glass ionomer cement on human exfoliated deciduous teeth stem cells correlates with released fluoride, strontium and aluminum ion concentrations. Archives of biological sciences. 2015;67(2):619-30.
  • 9. Schmalz G, Bindslev DA. Biocompatibility of Dental Materials: Springer; 2009.
  • 10. Pameijer C, Stanley H. Primate pulp response to anhydrous Chembond. Journal of Dental Research. 1984;63:171-.
  • 11. Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, et al. Assay guidance manual. 2004.
  • 12. Gilbert DF, Friedrich O. Cell Viability Assays: Methods and Protocols: Springer New York; 2017.
  • 13. Bean TA, Zhuang WC, Tong PY, Eick JD, Chappelow CC, Yourtee DM. Comparison of tetrazolium colorimetric and 51Cr release assays for cytotoxicity determination of dental biomaterials. Dental Materials. 1995;11(5-6):327-31.
  • 14. Stevens MG, Olsen SC. Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. Journal of Immunological Methods. 1993;157(1-2):225-31.
  • 15. Parboosing R, Mzobe G, Chonco L, Moodley I. Cell-based assays for assessing toxicity: a basic guide. Medicinal Chemistry. 2017;13(1):13-21.
  • 16. Shelton R. Biocompatibility of Dental Biomaterials: Elsevier Science; 2016.
  • 17. Teng Z, Kuang X, Wang J, Zhang X. Real-time cell analysis–a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity. Journal of virological methods. 2013;193(2):364-70.
  • 18. Ozdemir A, Ark M. xCELLigence real time cell analysis system: a new method for cell proliferation and cytotoxicity. Niche. 2013;2(2).
  • 19. ACEA-Biosciences. xCELLigence RTCA SP and MP instruments broşürü. 2013.
  • 20. Tuncer S, Demirci M. Dental materyallerde biyouyumluluk değerlendirmeleri. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2011;2011(2).
  • 21. Schedle A, Samorapoompichit P, Rausch-Fan X, Franz A, Füreder W, Sperr W, et al. Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations. Journal of dental research. 1995;74(8):1513-20.
  • 22. Galić E, Tadin A, Galić N, Kašuba V, Mladinić M, Rozgaj R, et al. Micronucleus, alkaline, and human 8-oxoguanine glycosylase 1 modified comet assays evaluation of glass-ionomer cements-in vitro. Archives of Industrial Hygiene and Toxicology. 2014;65(2):179-88.
  • 23. Huang F-M, Chang Y-C. Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2002;94(3):361-5.
  • 24. Koulaouzidou EA, Papazisis KT, Economides NA, Beltes P, Kortsaris AH. Antiproliferative effect of mineral trioxide aggregate, zinc oxide-eugenol cement, and glass-ionomer cement against three fibroblastic cell lines. Journal of Endodontics. 2005;31(1):44-6.
  • 25. Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. Journal of dental research. 1998;77(12):2012-9.
  • 26. Ranjkesh B, Isidor F, Kraft DCE, Løvschall H. In vitro cytotoxic evaluation of novel fast-setting calcium silicate cement compositions and dental materials using colorimetric methyl-thiazolyl-tetrazolium assay. Journal of oral science. 2018;60(1):82-8.
  • 27. Kanjevac T, Milovanovic M, Volarevic V, L Lukic M, Arsenijevic N, Markovic D, et al. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release. Medicinal Chemistry. 2012;8(1):40-5.
  • 28. Selimović-Dragaš M, Huseinbegović A, Kobašlija S, Hatibović-Kofman Š. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements. Bosnian journal of basic medical sciences. 2012;12(4):273.
  • 29. Mendonça AAMd, Oliveira CFd, Hebling J, Costa CAdS. Influence of thicknesses of smear layer on the transdentinal cytotoxicity and bond strength of a resin-modified glass-ionomer cement. Brazilian dental journal. 2012;23(4):379-86.
  • 30. Schmalz G, Schmalz C, Rotgans J. Die Pulpaverträglichkeit eines Glasionomer-und eines Zinkoxiphosphat-Zementes. Deutsche Zahnärztliche Zeitschrift. 1986;41(9):806-12.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Research
Authors

Türkay Kölüş 0000-0002-0840-7126

Hayriye Esra Ülker

Project Number 17102032
Publication Date December 27, 2020
Submission Date January 18, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

Vancouver Kölüş T, Ülker HE. İki farklı rezin modifiye cam iyonomer simanın bölgesel toksisitesinin değerlendirilmesi. Selcuk Dent J. 2020;7(3):413-21.