Research Article
BibTex RIS Cite

Evaluation of fracture strength of different CAD/CAM veneers that are manufactured for zirconia cores

Year 2022, Volume: 9 Issue: 3, 769 - 776, 26.12.2022
https://doi.org/10.15311/selcukdentj.1074645

Abstract

Background. The purpose of this study was to evaluate the fracture resistance of zirconia crowns veneered with CAD/CAM fabricated veneers by using simple and anatomic core designs with different veneering materials and procedures.
Methods. A total of 100 zirconia frameworks were fabricated with an anatomic core design or simple core design. The frameworks were then divided into five subgroups according to the following veneering procedures: Control (layering), cemented CAD/CAM fabricated feldspathic veneer, cemented CAD/CAM fabricated lithium disilicate veneer, fused CAD/CAM fabricated feldspathic veneer, and fused CAD/CAM fabricated lithium disilicate veneer. Next, 250000 cycles were applied with an occlusal load of 50 N at 1.6 Hz in a chewing simulator, and a thermal cycle was applied during loading (5°C to 50°C every 60 s). The crowns were then subjected to a single load failure test by using a universal test machine.
Results. Statistical analyses between the groups showed significant differences (F= 23.296; p<0,001). The lowest fracture resistance values were observed in fused feldspathic CAD/CAM veneers with an anatomic core design (470.63). The highest fracture resistance was obtained in cemented lithium disilicate CAD/CAM veneers with a simple core design (2075.06).
Conclusion. Within the limitations of this study, it can be said that the use of CAD/CAM fabricated veneers can be an alternative to layering when their advantages are considered.

Supporting Institution

Ankara Üniversitesi

Project Number

14A0234001

Thanks

The authors would like to thank Suat Çifci for design of restorations and İshak Elmas for support to the chewing simulation. This study was supplied by Ankara University Scientific Research Projects Coordination Unit. Project Number: 14A0234001.

References

  • 1. Vidotti HA, Pereira JR, Insaurralde E, et al. Thermo and mechanical cycling and veneering method do not influence Y-TZP core/veneer interface bond strength. Journal of dentistry 2013; 41: 307-312.
  • 2. Schley JS, Heussen N, Reich S, et al. Survival probability of zirconia‐based fixed dental prostheses up to 5 yr: a systematic review of the literature. Eur J Oral Sci 2010; 118: 443-450.
  • 3. Yoon HI, Yeo IS, Han JS. Effect of various surface treatments on the interfacial adhesion between zirconia cores and porcelain veneers. International Journal of Adhesion and Adhesives 2016; 69: 79-85.
  • 4. Le M, Papia E, Larsson C. The clinical success of tooth‐and implant‐supported zirconia‐based fixed dental prostheses. A systematic review. J Oral Rehabil 2015; 42: 467-480.
  • 5. Wahba MMED, El-Etreby AS, Morsi TS. Effect of core/veneer thickness ratio and veneer translucency on absolute and relative translucency of CAD-On restorations. Future Dental Journal 2017; 3: 8-14.
  • 6. Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. Journal of dentistry 2012; 40: 154-162.
  • 7. Triwatana P, Nagaviroj N, Tulapornchai C. Clinical performance and failures of zirconia-based fixed partial dentures: a review literature. J Adv Prosthodont 2012; 4: 76-83.
  • 8. Guess PC, Bonfante EA, Silva NR, et al. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater 2013; 29: 307-316.
  • 9. Sundh A, Sjögren G. A comparison of fracture strength of yttrium‐oxide‐partially‐stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil 2004; 31: 682-688.
  • 10. Komine F, Strub JR, Matsumura H. Bonding between layering materials and zirconia frameworks. Japanese Dental Science Review, 2012; 48: 153-161.
  • 11. Ishibe M, Raigrodski AJ, Flinn BD, et al. Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores. J Prosthet Dent 2011; 106: 29-37.
  • 12. Raigrodski AJ, Yu A, Chiche GJ, et al. Clinical efficacy of veneered zirconium dioxide-based posterior partial fixed dental prostheses: five-year results. J Prosthet Dent 2012; 108: 214-222.
  • 13. Heintze SD, Rousson V. Survival of zirconia-and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont 2010; 23: 493-502.
  • 14. Choi YS, Kim SH, Lee JB, et al. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont 2012; 4: 162-169.
  • 15. Al‐Wahadni A, Shahin A, Kurtz KS. Veneered zirconia‐based restorations fracture resistance analysis. J Prosthodont 2018; 27: 651-658.
  • 16. de Mello CC, Bitencourt SB, dos Santos DM, et al. The effect of surface treatment on shear bond strength between Y‐TZP and veneer ceramic: a systematic review and meta‐analysis. J Prosthodont 2018; 27: 624-635.
  • 17. Kanat B, Çömlekoğlu EM, Dündar‐Çömlekoğlu M, et al. Effect of various veneering techniques on mechanical strength of computer‐controlled zirconia framework designs. J Prosthodont 2014; 23: 445-455.
  • 18. Kim KY, Kwon TK, Kang TJ, et al. Digital veneering system enhances microtensile bond strength at zirconia coreveneer interface. Dent Mater J 2014; 33: 792-798.
  • 19. Schmitter M, Mueller D, Rues S. In vitro chipping behaviour of all‐ceramic crowns with a zirconia framework and feldspathic veneering: comparison of CAD/CAM‐produced veneer with manually layered veneer. J Oral Rehabil 2013; 40: 519-525.
  • 20. Nossair SA, Aboushelib MN, Morsi TS. Fracture and fatigue resistance of cemented versus fused CAD‐on veneers over customized zirconia implant abutments. J Prosthodont 2015; 24: 543-548.
  • 21. Schmitter M, Schweiger M, Mueller D, et al. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater 2014; 30: 122-130.
  • 22. Soares LM, Soares C, Miranda ME, et al. Influence of core‐veneer thickness ratio on the fracture load and failure mode of zirconia crowns. J Prosthodont 2019; 28: 209-215.
  • 23. Preis V, Letsch C, Handel G, et al. Influence of substructure design, veneer application technique, and firing regime on the in vitro performance of molar zirconia crowns. Dent Mater 2013; 29: 113-121.
  • 24. Aboushelib MN, De Kler M, Van Der Zel JM, et al. Microtensile Bond Strength and Impact Energy of Fracture of CAD‐Veneered Zirconia Restorations. J Prosthodont 2009; 18: 211-216.
  • 25. Al‐Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010; 37: 641-652.
  • 26. Lundberg K, Wu L, Papia E. The effect of grinding and/or airborne-particle abrasion on the bond strength between zirconia and veneering porcelain: a systematic review. Acta Biomater Odontol Scand 2017; 3: 8-20.
  • 27. Beuer F, Schweiger J, Eichberger M, et al. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings-a new fabrication mode for all-ceramic restorations. Dent Mater 2009; 25: 121-128.
  • 28. Costa AKF, Borges ALS, Fleming GJP, et al. The strength of sintered and adhesively bonded zirconia/veneer-ceramic bilayers. Journal of dentistry 2014; 42: 1269-1276.
  • 29. Zeighami S, Mahgoli H, Farid F, et al. The effect of multiple firings on microtensile bond strength of core‐veneer zirconia‐based all‐ceramic restorations. J Prosthodont 2013; 22: 49-53.
  • 30. Bayrak A, Akat B, Ocak M, et al. Micro-computed tomography analysis of fit of ceramic inlays produced with different cad software programs. Eur J Prosthodont Restor Dent 2021; 29: 160-165.
  • 31. Sim JY, Lee WS, Kim JH, et al. Evaluation of shear bond strength of veneering ceramics and zirconia fabricated by the digital veneering method. J Prosthodont Res 2016; 60: 106-113.
  • 32. Renda JJ, Harding AB, Bailey CW, et al. Microtensile bond strength of lithium disilicate to zirconia with the CAD‐on technique. J Prosthodont 2015; 24: 188-193.
  • 33. Kim KY, Kwon TK, Kang TJ, et al. Digital veneering system enhances microtensile bond strength at zirconia core veneer interface. Dent Mater J 2014; 33: 792-798.
  • 34. Komine F, Blatz MB, Matsumura H. Current status ofzirconia-based fixed restorations. J Oral Sci 2010; 52: 531-539.
  • 35. Bachhav VC, Aras MA. Zirconia-based fixed partial dentures: A clinical review. Quintessence international, 2011; 42: 173-187.
  • 36. Basso GR, Moraes RR, Borba M, et al. Reliability and failure behavior of CAD-on fixed partial dentures. Dent Mater 2016; 32: 624-630.
  • 36. Basso GR, Moraes RR, Borba M, et al. Flexural strength and reliability of monolithic and trilayer ceramic structures obtained by the CAD-on technique. Dent Mater 2015; 31: 1453-1459.
  • 38. Zaher AM, Hochstedler JL, Rueggeberg FA, et al. Shear bond strength of zirconia-based ceramics veneered with 2 different techniques. J Prosthet Dent 2017; 118: 221-227.

Evaluation of fracture strength of different CAD/CAM veneers that are manufactured for zirconia cores

Year 2022, Volume: 9 Issue: 3, 769 - 776, 26.12.2022
https://doi.org/10.15311/selcukdentj.1074645

Abstract

Amaç. Bu çalışmanın amacı, farklı veneer materyalleri ve işlemleri ile hazırlanmış basit ve anatomik kor tasarımları kullanarak kaplanmış zirkonya altyapılı kronların kırılma direncini değerlendirmektir.
Gereç ve Yöntemler. Anatomik bir çekirdek tasarımı veya basit bir çekirdek tasarımı ile toplam 100 zirkonya kron altyapısı üretildi. Bu kor altyapılar daha sonra aşağıdaki veneerleme prosedürlerine göre beş alt gruba ayrıldı: Kontrol (katmanlama), simante CAD/CAM fabrikasyon feldspatik veneer, simante CAD/CAM fabrikasyon lityum disilikat veneer, porselenle kaynaştırılmış CAD/CAM fabrikasyon feldspatik veneer ve porselenle kaynaştırılmış CAD/CAM fabrikasyon lityum disilikat kaplama. Daha sonra, bir çiğneme simülatöründe 1,6 Hz'de 50 N'luk bir oklüzal yük ile 250000 döngü uygulandı ve yükleme sırasında bir termal döngü uygulandı (her 60 saniyede bir 5°C ila 50°C). Kronlar daha sonra evrensel bir test makinesi kullanılarak kırma testine tabi tutuldu.
Bulgular. Gruplar arasında istatistiksel analizler önemli farklılıklar gösterdi (F= 23.296; p<0,001). En düşük kırılma direnci değerleri, anatomik çekirdek tasarımlı (470.63) porselenle kaynaştırılmış feldspatik CAD/CAM kaplamalarda gözlendi. En yüksek kırılma direnci, basit bir çekirdek tasarımına (2075.06) sahip simante lityum disilikat CAD/CAM kaplamalarda elde edildi.
Sonuç. Bu çalışmanın sınırlamaları dahilinde, avantajları düşünüldüğünde CAD/CAM fabrikasyon veneerleme tekniklerinin kullanımının katmanlamaya alternatif olabileceği söylenebilir.

Project Number

14A0234001

References

  • 1. Vidotti HA, Pereira JR, Insaurralde E, et al. Thermo and mechanical cycling and veneering method do not influence Y-TZP core/veneer interface bond strength. Journal of dentistry 2013; 41: 307-312.
  • 2. Schley JS, Heussen N, Reich S, et al. Survival probability of zirconia‐based fixed dental prostheses up to 5 yr: a systematic review of the literature. Eur J Oral Sci 2010; 118: 443-450.
  • 3. Yoon HI, Yeo IS, Han JS. Effect of various surface treatments on the interfacial adhesion between zirconia cores and porcelain veneers. International Journal of Adhesion and Adhesives 2016; 69: 79-85.
  • 4. Le M, Papia E, Larsson C. The clinical success of tooth‐and implant‐supported zirconia‐based fixed dental prostheses. A systematic review. J Oral Rehabil 2015; 42: 467-480.
  • 5. Wahba MMED, El-Etreby AS, Morsi TS. Effect of core/veneer thickness ratio and veneer translucency on absolute and relative translucency of CAD-On restorations. Future Dental Journal 2017; 3: 8-14.
  • 6. Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. Journal of dentistry 2012; 40: 154-162.
  • 7. Triwatana P, Nagaviroj N, Tulapornchai C. Clinical performance and failures of zirconia-based fixed partial dentures: a review literature. J Adv Prosthodont 2012; 4: 76-83.
  • 8. Guess PC, Bonfante EA, Silva NR, et al. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater 2013; 29: 307-316.
  • 9. Sundh A, Sjögren G. A comparison of fracture strength of yttrium‐oxide‐partially‐stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil 2004; 31: 682-688.
  • 10. Komine F, Strub JR, Matsumura H. Bonding between layering materials and zirconia frameworks. Japanese Dental Science Review, 2012; 48: 153-161.
  • 11. Ishibe M, Raigrodski AJ, Flinn BD, et al. Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores. J Prosthet Dent 2011; 106: 29-37.
  • 12. Raigrodski AJ, Yu A, Chiche GJ, et al. Clinical efficacy of veneered zirconium dioxide-based posterior partial fixed dental prostheses: five-year results. J Prosthet Dent 2012; 108: 214-222.
  • 13. Heintze SD, Rousson V. Survival of zirconia-and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont 2010; 23: 493-502.
  • 14. Choi YS, Kim SH, Lee JB, et al. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont 2012; 4: 162-169.
  • 15. Al‐Wahadni A, Shahin A, Kurtz KS. Veneered zirconia‐based restorations fracture resistance analysis. J Prosthodont 2018; 27: 651-658.
  • 16. de Mello CC, Bitencourt SB, dos Santos DM, et al. The effect of surface treatment on shear bond strength between Y‐TZP and veneer ceramic: a systematic review and meta‐analysis. J Prosthodont 2018; 27: 624-635.
  • 17. Kanat B, Çömlekoğlu EM, Dündar‐Çömlekoğlu M, et al. Effect of various veneering techniques on mechanical strength of computer‐controlled zirconia framework designs. J Prosthodont 2014; 23: 445-455.
  • 18. Kim KY, Kwon TK, Kang TJ, et al. Digital veneering system enhances microtensile bond strength at zirconia coreveneer interface. Dent Mater J 2014; 33: 792-798.
  • 19. Schmitter M, Mueller D, Rues S. In vitro chipping behaviour of all‐ceramic crowns with a zirconia framework and feldspathic veneering: comparison of CAD/CAM‐produced veneer with manually layered veneer. J Oral Rehabil 2013; 40: 519-525.
  • 20. Nossair SA, Aboushelib MN, Morsi TS. Fracture and fatigue resistance of cemented versus fused CAD‐on veneers over customized zirconia implant abutments. J Prosthodont 2015; 24: 543-548.
  • 21. Schmitter M, Schweiger M, Mueller D, et al. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater 2014; 30: 122-130.
  • 22. Soares LM, Soares C, Miranda ME, et al. Influence of core‐veneer thickness ratio on the fracture load and failure mode of zirconia crowns. J Prosthodont 2019; 28: 209-215.
  • 23. Preis V, Letsch C, Handel G, et al. Influence of substructure design, veneer application technique, and firing regime on the in vitro performance of molar zirconia crowns. Dent Mater 2013; 29: 113-121.
  • 24. Aboushelib MN, De Kler M, Van Der Zel JM, et al. Microtensile Bond Strength and Impact Energy of Fracture of CAD‐Veneered Zirconia Restorations. J Prosthodont 2009; 18: 211-216.
  • 25. Al‐Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010; 37: 641-652.
  • 26. Lundberg K, Wu L, Papia E. The effect of grinding and/or airborne-particle abrasion on the bond strength between zirconia and veneering porcelain: a systematic review. Acta Biomater Odontol Scand 2017; 3: 8-20.
  • 27. Beuer F, Schweiger J, Eichberger M, et al. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings-a new fabrication mode for all-ceramic restorations. Dent Mater 2009; 25: 121-128.
  • 28. Costa AKF, Borges ALS, Fleming GJP, et al. The strength of sintered and adhesively bonded zirconia/veneer-ceramic bilayers. Journal of dentistry 2014; 42: 1269-1276.
  • 29. Zeighami S, Mahgoli H, Farid F, et al. The effect of multiple firings on microtensile bond strength of core‐veneer zirconia‐based all‐ceramic restorations. J Prosthodont 2013; 22: 49-53.
  • 30. Bayrak A, Akat B, Ocak M, et al. Micro-computed tomography analysis of fit of ceramic inlays produced with different cad software programs. Eur J Prosthodont Restor Dent 2021; 29: 160-165.
  • 31. Sim JY, Lee WS, Kim JH, et al. Evaluation of shear bond strength of veneering ceramics and zirconia fabricated by the digital veneering method. J Prosthodont Res 2016; 60: 106-113.
  • 32. Renda JJ, Harding AB, Bailey CW, et al. Microtensile bond strength of lithium disilicate to zirconia with the CAD‐on technique. J Prosthodont 2015; 24: 188-193.
  • 33. Kim KY, Kwon TK, Kang TJ, et al. Digital veneering system enhances microtensile bond strength at zirconia core veneer interface. Dent Mater J 2014; 33: 792-798.
  • 34. Komine F, Blatz MB, Matsumura H. Current status ofzirconia-based fixed restorations. J Oral Sci 2010; 52: 531-539.
  • 35. Bachhav VC, Aras MA. Zirconia-based fixed partial dentures: A clinical review. Quintessence international, 2011; 42: 173-187.
  • 36. Basso GR, Moraes RR, Borba M, et al. Reliability and failure behavior of CAD-on fixed partial dentures. Dent Mater 2016; 32: 624-630.
  • 36. Basso GR, Moraes RR, Borba M, et al. Flexural strength and reliability of monolithic and trilayer ceramic structures obtained by the CAD-on technique. Dent Mater 2015; 31: 1453-1459.
  • 38. Zaher AM, Hochstedler JL, Rueggeberg FA, et al. Shear bond strength of zirconia-based ceramics veneered with 2 different techniques. J Prosthet Dent 2017; 118: 221-227.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Research
Authors

Bora Akat 0000-0003-2928-2526

Merve Çakırbay Tanış 0000-0001-5698-8220

Mehmet Ali Kılıçarslan 0000-0002-8619-957X

Project Number 14A0234001
Publication Date December 26, 2022
Submission Date February 17, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

Vancouver Akat B, Çakırbay Tanış M, Kılıçarslan MA. Evaluation of fracture strength of different CAD/CAM veneers that are manufactured for zirconia cores. Selcuk Dent J. 2022;9(3):769-76.