Review
BibTex RIS Cite

Pulpa Kaplama Biyomateryallerinin Biyoaktivitelerinin Değerlendirilmesi: In vitro Yaklaşımlar

Year 2024, Volume: 11 Issue: 3, 362 - 368, 23.12.2024
https://doi.org/10.15311/selcukdentj.1494689

Abstract

Diş pulpasının sağlığının korunması, dişin uzun süreli sağlığı için çok önemlidir. Vital pulpa tedavisi travma, çürük veya diş prosedürlerinden etkilenen dişlerde pulpa dokusunun canlılığını korumayı ve desteklemeyi amaçlamaktadır. Birincil amaç, diş canlılığını korumak için ilave dentin oluşumunu teşvik etmektir. Vital pulpa tedavisindeki başarı; doğru teşhise, hasta seçimine ve pulpanın maruz kaldığı yer, pulpa olgunluğu ve mevcut diş tedavisinin kalitesi gibi çeşitli faktörlerin değerlendirilmesine bağlıdır. Vital pulpa tedavisinde, açıkta kalan dentin üzerine pulpa kaplama materyali adı verilen koruyucu bir biyoajan uygulanır. Başarılı doku yanıtlarını teşvik etmek ve hasta sonuçlarını iyileştirmek için çok sayıda diş biyomateryali geliştirilmiştir. Dentin-pulpa kompleksi iyileşme mekanizmalarına ilişkin anlayışımızdaki gelişmelerle birlikte, konservatif ve restoratif diş prosedürleri sırasında pulpa canlılığını destekleyen yeni biyomateryaller ortaya çıkmıştır. Ancak mevcut seçeneklerin çeşitliliği nedeniyle her klinik senaryo için en uygun biyomateryali seçmek zor olabilmektedir. Bu nedenle, pulpa kaplamanın diş sağlığının korunmasındaki önemli rolü göz önüne alındığında, yeni pulpa kaplama biyomateryallerinin biyoaktivitesinin geliştirilmesi ve değerlendirilmesi çok önemlidir. Bu derlemede, yeni pulpa kaplama biyomateryallerinin hem sitoprotektif hem de sitotoksik özelliklerini değerlendirmek için sıklıkla kullanılan tipik in vitro hücre kültürü ve moleküler biyoloji tekniklerini derlenmiştir. Bu teknikler, biyomateryal etkinliğinin ve güvenliğinin kapsamlı bir şekilde değerlendirilmesine katkıda bulunarak hayati pulpal tedavi uygulamalarının ve hasta bakımının geliştirilmesine yardımcı olur.

Ethical Statement

Yazarlar çıkar çatışması bildirmemiştir.

Supporting Institution

Yazarlar bu çalışma için finansal destek almadığını beyan etmiştir.

References

  • 1. Islam R, Islam MRR, Tanaka T, Alam MK, Ahmed HMA, Sano H. Direct pulp capping procedures – Evidence and practice. Jpn Dent Sci Rev [Internet]. 2023;59:48–61. Available from: https://doi.org/10.1016/j.jdsr.2023.02.002
  • 2. Duncan HF. Present status and future directions—Vital pulp treatment and pulp preservation strategies. Int Endod J. 2022;55(S3):497–511.
  • 3. Shah A, Peacock R, Eliyas S. Pulp therapy and root canal treatment techniques in immature permanent teeth: an update. Br Dent J. 2022;232(8):524–30.
  • 4. Komabayashi T, Zhu Q, Eberhart R, Imai Y. Current status of direct pulp-capping materials for permanent teeth. Dent Mater J. 2016;35(1):1–12.
  • 5. Nie E, Yu J, Jiang R, Liu X, Li X, Islam R, et al. Effectiveness of direct pulp capping bioactive materials in dentin regeneration: A review. Materials (Basel). 2021;14(22).
  • 6. da Rosa WLO, Cocco AR, Silva TM d., Mesquita LC, Galarça AD, Silva AF d., et al. Current trends and future perspectives of dental pulp capping materials: A systematic review. J Biomed Mater Res - Part B Appl Biomater. 2018;106(3):1358–68.
  • 7. Segeritz CP, Vallier L. Cell Culture: Growing Cells as Model Systems In Vitro. Basic Sci Methods Clin Res. 2017;(January):151–72.
  • 8. Gundogdu R, Erdogan MK, Sever A, Toy Y. Synergistic effect of RAD50 downregulation on combination of rucaparib and doxorubicin. Ege J Med. 2023;62(2):289–300.
  • 9. Bettoun A, Joffre C, Zago G, Surdez D, Vallerand D, Gundogdu R, et al. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation. Oncotarget. 2016;7(28):44142–60.
  • 10. Gomez V, Gundogdu R, Gomez M, Hoa L, Panchal N, O’Driscoll M, et al. Regulation of DNA damage responses and cell cycle progression by hMOB2. Cell Signal [Internet]. 2015 Feb [cited 2018 Nov 1];27(2):326–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0898656814003702
  • 11. Gundogdu R, Erdogan MK, Ditsiou A, Spanswick V, Garcia-Gomez JJ, Hartley JA, et al. hMOB2 deficiency impairs homologous recombination-mediated DNA repair and sensitises cancer cells to PARP inhibitors. Cell Signal [Internet]. 2021;87(March):110106. Available from: https://doi.org/10.1016/j.cellsig.2021.110106
  • 12. Erdogan MK, Gecibesler IH, Yapar Y, Gundogdu R, Kirici M, Behcet L, et al. Fatty acid composition, enzyme inhibitory effect, antioxidant and anticancer activity of extract from Saponaria prostrata WILLD. subsp. anatolica HEDGE. Bioorg Chem [Internet]. 2021;113(March):105032. Available from: https://doi.org/10.1016/j.bioorg.2021.105032
  • 13. Klein SG, Steckbauer A, Alsolami SM, Arossa S, Parry AJ, Li M, et al. Toward Best Practices for Controlling Mammalian Cell Culture Environments. Front Cell Dev Biol. 2022;10(February):1–10.
  • 14. Aschner M, Suñol C. Cell Culture Techniques Cell Culture Techniques [Internet]. 2007. Available from: http://www.springer.com/series/7657
  • 15. Phelan MC. Techniques for mammalian cell tissue culture. Curr Protoc Hum Genet. 2006; Appendix 3:1–18.
  • 16. Phelan K, May KM. Basic techniques in mammalian cell tissue culture. Curr Protoc Toxicol. 2016;2016(November): A.3B.1-A.3B.22.
  • 17. Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front Cell Dev Biol. 2021;9(July):1–11.
  • 18. Piwocka O, Musielak M, Ampuła K, Piotrowski I, Adamczyk B, Fundowicz M, et al. Navigating challenges: optimising methods for primary cell culture isolation. Cancer Cell Int. 2024;24(1):1–12.
  • 19. Verma A, Megha V, Singh A. Animal tissue culture principles and applications. Anim Biotechnol. 2020; 5:269–93.
  • 20. Álvarez-Vásquez JL, Castañeda-Alvarado CP. Dental Pulp Fibroblast: A Star Cell. J Endod. 2022;48(8):1005–19.
  • 21. Nakanishi T, Takegawa D, Hirao K, Takahashi K, Yumoto H, Matsuo T. Roles of dental pulp fibroblasts in the recognition of bacterium-related factors and subsequent development of pulpitis. Jpn Dent Sci Rev [Internet]. 2011;47(2):161–6. Available from: http://dx.doi.org/10.1016/j.jdsr.2011.02.001
  • 22. López-García S, Pecci-Lloret MP, Pecci-Lloret MR, Oñate-Sánchez RE, García-Bernal D, Castelo-Baz P, et al. In vitro evaluation of the biological effects of ACTIVA kids BioACTIVE restorative, ionolux, and riva light cure on human dental pulp stem cells. Materials (Basel). 2019;12(22):1–11.
  • 23. Lee SM, Kim SY, Kim JH, Jun SK, Kim HW, Lee JH, et al. Depth-Dependent Cellular Response from Dental Bulk-Fill Resins in Human Dental Pulp Stem Cells. Stem Cells Int. 2019;2019.
  • 24. Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 2018;44(1):126–32.
  • 25. Collado-González M, Pecci-Lloret MR, Tomás-Catalá CJ, García-Bernal D, Oñate-Sánchez RE, Llena C, et al. Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dent Mater. 2018;34(6):932–43.
  • 26. Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J. 2017;50(April): e63–72.
  • 27. Y, Luo T, Shen Y, Haapasalo M, Zou L, Liu J. Effect of iRoot Fast Set root repair material on the proliferation, migration and differentiation of human dental pulp stem cells in vitro. PLoS One. 2017;12(10):1–15.
  • 28. Jun SK, Lee JH, Lee HH. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells. Biomed Res Int. 2017;2017.
  • 29. Widbiller M, Lindner SR, Buchalla W, Eidt A, Hiller KA, Schmalz G, et al. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements. Clin Oral Investig. 2016;20(2):237–46.
  • 30. Niu LN, Watson D, Thames K, Primus CM, Bergeron BE, Jiao K, et al. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells. Sci Rep. 2015;5(October):1–13.
  • 31. Pedano MS, Li X, Yoshihara K, Van Landuyt K, Van Meerbeek B. Cytotoxicity and bioactivity of dental pulp-capping agents towards human tooth-pulp cells: A systematic review of in-vitro studies and meta-analysis of randomized and controlled clinical trials. Materials (Basel). 2020;13(12):1–42.
  • 32. Ates G, Vanhaecke T, Rogiers V, Rodrigues RM. Assaying cellular viability using the neutral red uptake assay. Methods Mol Biol. 2017; 1601:19–26.
  • 33. Dou L, Yan Q, Yang D. Effect of five dental pulp capping agents on cell proliferation, viability, apoptosis and mineralization of human dental pulp cells. Exp Ther Med. 2020;(5):2377–83.
  • 34. Kato G, Gomes PS, Neppelenbroek KH, Fernandes MH, Grenho L. Cements — Integrated Antibacterial, Irritation and Cytocompatibility Assessment. 2023;
  • 35. Chinheya RM, Yilmaz M, Üstündağ A, İpek S, Duydu Y, Aydin C. In vitro investigation of the cytotoxic, apoptotic and genotoxic effects of pulp capping materials on l929 mouse fibroblast cells. J Res Pharm. 2021;25(5):616–25.
  • 36. Klein-Junior CA, Zimmer R, Dobler T, Oliveira V, Marinowic DR, Özkömür A, et al. Cytotoxicity assessment of bio-c repair Íon+: A new calcium silicate-based cement. J Dent Res Dent Clin Dent Prospects [Internet]. 2021;15(3):152–6. Available from: https://doi.org/10.34172/joddd.2021.026
  • 37. ISO. Biological evaluation of medical devices: Part 12: Sample preparation and reference materials. 2021.
  • 38. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. In: Assay Guidance Manual [Internet]. 2004. p. 1–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23805433
  • 39. Prabst K, Engelhardt H, Ringgeler S, Hubner H, Ates G, Vanhaeke T, et al. Cell Viability Assays [Internet]. Vol. 1601. 2017. 1–43, 89–97 p. Available from: http://link.springer.com/10.1007/978-1-4939-6960-9
  • 40. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1(3):332–49.
  • 41. Cai Y, Prochazkova M, Kim YS, Jiang C, Ma J, Moses L, et al. Assessment and comparison of viability assays for cellular products. Cytotherapy. 2024;26(2):201–9.
  • 42. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J lmmunological Methods. 1983; 65:55–63.
  • 43. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018(6):469–71.
  • 44. Meerloo J van, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Methods in Molecular Biology. 2011. p. 237–47.
  • 45. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23).
  • 46. Kim Y, Lee D, Song D, Kim HM, Kim SY. Biocompatibility and bioactivity of set direct pulp capping materials on human dental pulp stem cells. Materials (Basel). 2020;13(18):1–11.
  • 47. Pedano MS, Li X, Li S, Sun Z, Cokic SM, Putzeys E, et al. Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dent Mater [Internet]. 2018;34(5):797–808. Available from: http://dx.doi.org/10.1016/j.dental.2018.02.005
  • 48. Rodriguez LG, Wu X, Guan JL. Wound-healing assay. Methods Mol Biol. 2005;99(1):665–706.
  • 49. Jonkman JEN, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. Cell Adhesion & Migration an introduction to the wound healing assay using livecell microscopy an introduction to the wound healing assay using livecell microscopy. Cell Adhes Migr. 2014;8(5):440–51.
  • 50. Wang X, Decker CC, Zechner L, Krstin S, Wink M. In vitro wound healing of tumor cells: Inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol Toxicol. 2019;20(1):1–12.
  • 51. Kauanova S, Urazbayev A, Vorobjev I. The Frequent Sampling of Wound Scratch Assay Reveals the “Opportunity” Window for Quantitative Evaluation of Cell Motility-Impeding Drugs. Front Cell Dev Biol. 2021;9(March):1–14.
  • 52. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995; 1848:39–51.
  • 53. Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis [Internet]. 2022;27(7–8):482–508. Available from: https://doi.org/10.1007/s10495-022-01735-y
  • 54. Van Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM. Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31(1):1–9.
  • 55. Bernar A, Gebetsberger JV, Bauer M, Streif W, Schirmer M. Optimization of the Alizarin Red S Assay by Enhancing Mineralization of Osteoblasts. Int J Mol Sci. 2023;24(1).
  • 56. Bensimon-Brito A, Cardeira J, Dionísio G, Huysseune A, Cancela ML, Witten PE. Revisiting in vivo staining with alizarin red S - A valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Dev Biol [Internet]. 2016;16(1). Available from: http://dx.doi.org/10.1186/s12861-016-0102-4
  • 57. Cao Y, Song M, Kim E, Shon W, Chugal N, Bogen G, et al. Pulp-dentin regeneration: Current state and future prospects. J Dent Res. 2015;94(11):1544–51.
  • 58. Rodrigues EM, Cornélio ALG, Mestieri LB, Fuentes ASC, Salles LP, Rossa-Junior C, et al. Human dental pulp cells response to mineral trioxide aggregate (MTA) and MTA Plus: cytotoxicity and gene expression analysis. Int Endod J. 2017;50(8):780–9.
  • 59. Lee JB, Park SJ, Kim HH, Kwon YS, Lee KW, Min KS. Physical properties and biological/odontogenic effects of an experimentally developed fast-setting α-tricalcium phosphate-based pulp capping material. BMC Oral Health. 2014;14(1):1–11.
  • 60. Alberts, Alberts B, Johnson A, Lewis J, Raff M, Roberts K, et al. Molecular biology of the cell. 4th editio. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and PW, editor. New York: Garland Science; 2002.
  • 61. Ginzinger DG. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp Hematol. 2002;30(6):503–12.
  • 62. Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol. 2009;67(1):6–20.
  • 63. Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes (Basel). 2022;13(12).
  • 64. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44(5):619–26.

Bioactivity Assessment of Pulp Capping Biomaterials: In vitro Approaches

Year 2024, Volume: 11 Issue: 3, 362 - 368, 23.12.2024
https://doi.org/10.15311/selcukdentj.1494689

Abstract

Maintaining the health of the dental pulp is essential for the long-term well-being of a tooth. Vital pulpal therapy is aimed at preserving and supporting the vitality of pulp tissue in teeth affected by trauma, caries, or dental procedures. The primary objective is to stimulate the formation of reparative dentin to maintain tooth viability. Successful outcomes in vital pulpal therapy rely on accurate diagnosis, patient selection, and evaluation of various factors such as pulp exposure location, pulp maturity, and quality of existing dental treatment. In vital pulpal therapy, a protective bioagent, called a pulp capping material, is applied over the exposed dentin. Over time, numerous dental biomaterials have been developed to promote safe tissue responses and improve treatment outcomes. With advancements in our understanding of dentin-pulp complex healing mechanisms, new biomaterials have emerged to support pulp vitality during conservative and restorative dental procedures. However, selecting the most suitable biomaterial for each clinical scenario can be challenging due to the array of options available. Therefore, developing and assessing the bioactivity of novel pulp capping biomaterials is crucial, given the significant role of pulp capping in maintaining dental health. In this review, we review the typical in vitro cell culture and molecular biology techniques frequently utilised to evaluate both the cytoprotective and cytotoxic properties of novel pulp capping biomaterials. These techniques contribute to the comprehensive assessment of biomaterial efficacy and safety, aiding in the advancement of vital pulpal therapy practices and patient care.

Ethical Statement

The authors have no conflict of interest to declare

Supporting Institution

The authors declared that this study has received no financial support.

References

  • 1. Islam R, Islam MRR, Tanaka T, Alam MK, Ahmed HMA, Sano H. Direct pulp capping procedures – Evidence and practice. Jpn Dent Sci Rev [Internet]. 2023;59:48–61. Available from: https://doi.org/10.1016/j.jdsr.2023.02.002
  • 2. Duncan HF. Present status and future directions—Vital pulp treatment and pulp preservation strategies. Int Endod J. 2022;55(S3):497–511.
  • 3. Shah A, Peacock R, Eliyas S. Pulp therapy and root canal treatment techniques in immature permanent teeth: an update. Br Dent J. 2022;232(8):524–30.
  • 4. Komabayashi T, Zhu Q, Eberhart R, Imai Y. Current status of direct pulp-capping materials for permanent teeth. Dent Mater J. 2016;35(1):1–12.
  • 5. Nie E, Yu J, Jiang R, Liu X, Li X, Islam R, et al. Effectiveness of direct pulp capping bioactive materials in dentin regeneration: A review. Materials (Basel). 2021;14(22).
  • 6. da Rosa WLO, Cocco AR, Silva TM d., Mesquita LC, Galarça AD, Silva AF d., et al. Current trends and future perspectives of dental pulp capping materials: A systematic review. J Biomed Mater Res - Part B Appl Biomater. 2018;106(3):1358–68.
  • 7. Segeritz CP, Vallier L. Cell Culture: Growing Cells as Model Systems In Vitro. Basic Sci Methods Clin Res. 2017;(January):151–72.
  • 8. Gundogdu R, Erdogan MK, Sever A, Toy Y. Synergistic effect of RAD50 downregulation on combination of rucaparib and doxorubicin. Ege J Med. 2023;62(2):289–300.
  • 9. Bettoun A, Joffre C, Zago G, Surdez D, Vallerand D, Gundogdu R, et al. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation. Oncotarget. 2016;7(28):44142–60.
  • 10. Gomez V, Gundogdu R, Gomez M, Hoa L, Panchal N, O’Driscoll M, et al. Regulation of DNA damage responses and cell cycle progression by hMOB2. Cell Signal [Internet]. 2015 Feb [cited 2018 Nov 1];27(2):326–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0898656814003702
  • 11. Gundogdu R, Erdogan MK, Ditsiou A, Spanswick V, Garcia-Gomez JJ, Hartley JA, et al. hMOB2 deficiency impairs homologous recombination-mediated DNA repair and sensitises cancer cells to PARP inhibitors. Cell Signal [Internet]. 2021;87(March):110106. Available from: https://doi.org/10.1016/j.cellsig.2021.110106
  • 12. Erdogan MK, Gecibesler IH, Yapar Y, Gundogdu R, Kirici M, Behcet L, et al. Fatty acid composition, enzyme inhibitory effect, antioxidant and anticancer activity of extract from Saponaria prostrata WILLD. subsp. anatolica HEDGE. Bioorg Chem [Internet]. 2021;113(March):105032. Available from: https://doi.org/10.1016/j.bioorg.2021.105032
  • 13. Klein SG, Steckbauer A, Alsolami SM, Arossa S, Parry AJ, Li M, et al. Toward Best Practices for Controlling Mammalian Cell Culture Environments. Front Cell Dev Biol. 2022;10(February):1–10.
  • 14. Aschner M, Suñol C. Cell Culture Techniques Cell Culture Techniques [Internet]. 2007. Available from: http://www.springer.com/series/7657
  • 15. Phelan MC. Techniques for mammalian cell tissue culture. Curr Protoc Hum Genet. 2006; Appendix 3:1–18.
  • 16. Phelan K, May KM. Basic techniques in mammalian cell tissue culture. Curr Protoc Toxicol. 2016;2016(November): A.3B.1-A.3B.22.
  • 17. Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front Cell Dev Biol. 2021;9(July):1–11.
  • 18. Piwocka O, Musielak M, Ampuła K, Piotrowski I, Adamczyk B, Fundowicz M, et al. Navigating challenges: optimising methods for primary cell culture isolation. Cancer Cell Int. 2024;24(1):1–12.
  • 19. Verma A, Megha V, Singh A. Animal tissue culture principles and applications. Anim Biotechnol. 2020; 5:269–93.
  • 20. Álvarez-Vásquez JL, Castañeda-Alvarado CP. Dental Pulp Fibroblast: A Star Cell. J Endod. 2022;48(8):1005–19.
  • 21. Nakanishi T, Takegawa D, Hirao K, Takahashi K, Yumoto H, Matsuo T. Roles of dental pulp fibroblasts in the recognition of bacterium-related factors and subsequent development of pulpitis. Jpn Dent Sci Rev [Internet]. 2011;47(2):161–6. Available from: http://dx.doi.org/10.1016/j.jdsr.2011.02.001
  • 22. López-García S, Pecci-Lloret MP, Pecci-Lloret MR, Oñate-Sánchez RE, García-Bernal D, Castelo-Baz P, et al. In vitro evaluation of the biological effects of ACTIVA kids BioACTIVE restorative, ionolux, and riva light cure on human dental pulp stem cells. Materials (Basel). 2019;12(22):1–11.
  • 23. Lee SM, Kim SY, Kim JH, Jun SK, Kim HW, Lee JH, et al. Depth-Dependent Cellular Response from Dental Bulk-Fill Resins in Human Dental Pulp Stem Cells. Stem Cells Int. 2019;2019.
  • 24. Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 2018;44(1):126–32.
  • 25. Collado-González M, Pecci-Lloret MR, Tomás-Catalá CJ, García-Bernal D, Oñate-Sánchez RE, Llena C, et al. Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dent Mater. 2018;34(6):932–43.
  • 26. Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J. 2017;50(April): e63–72.
  • 27. Y, Luo T, Shen Y, Haapasalo M, Zou L, Liu J. Effect of iRoot Fast Set root repair material on the proliferation, migration and differentiation of human dental pulp stem cells in vitro. PLoS One. 2017;12(10):1–15.
  • 28. Jun SK, Lee JH, Lee HH. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells. Biomed Res Int. 2017;2017.
  • 29. Widbiller M, Lindner SR, Buchalla W, Eidt A, Hiller KA, Schmalz G, et al. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements. Clin Oral Investig. 2016;20(2):237–46.
  • 30. Niu LN, Watson D, Thames K, Primus CM, Bergeron BE, Jiao K, et al. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells. Sci Rep. 2015;5(October):1–13.
  • 31. Pedano MS, Li X, Yoshihara K, Van Landuyt K, Van Meerbeek B. Cytotoxicity and bioactivity of dental pulp-capping agents towards human tooth-pulp cells: A systematic review of in-vitro studies and meta-analysis of randomized and controlled clinical trials. Materials (Basel). 2020;13(12):1–42.
  • 32. Ates G, Vanhaecke T, Rogiers V, Rodrigues RM. Assaying cellular viability using the neutral red uptake assay. Methods Mol Biol. 2017; 1601:19–26.
  • 33. Dou L, Yan Q, Yang D. Effect of five dental pulp capping agents on cell proliferation, viability, apoptosis and mineralization of human dental pulp cells. Exp Ther Med. 2020;(5):2377–83.
  • 34. Kato G, Gomes PS, Neppelenbroek KH, Fernandes MH, Grenho L. Cements — Integrated Antibacterial, Irritation and Cytocompatibility Assessment. 2023;
  • 35. Chinheya RM, Yilmaz M, Üstündağ A, İpek S, Duydu Y, Aydin C. In vitro investigation of the cytotoxic, apoptotic and genotoxic effects of pulp capping materials on l929 mouse fibroblast cells. J Res Pharm. 2021;25(5):616–25.
  • 36. Klein-Junior CA, Zimmer R, Dobler T, Oliveira V, Marinowic DR, Özkömür A, et al. Cytotoxicity assessment of bio-c repair Íon+: A new calcium silicate-based cement. J Dent Res Dent Clin Dent Prospects [Internet]. 2021;15(3):152–6. Available from: https://doi.org/10.34172/joddd.2021.026
  • 37. ISO. Biological evaluation of medical devices: Part 12: Sample preparation and reference materials. 2021.
  • 38. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. In: Assay Guidance Manual [Internet]. 2004. p. 1–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23805433
  • 39. Prabst K, Engelhardt H, Ringgeler S, Hubner H, Ates G, Vanhaeke T, et al. Cell Viability Assays [Internet]. Vol. 1601. 2017. 1–43, 89–97 p. Available from: http://link.springer.com/10.1007/978-1-4939-6960-9
  • 40. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1(3):332–49.
  • 41. Cai Y, Prochazkova M, Kim YS, Jiang C, Ma J, Moses L, et al. Assessment and comparison of viability assays for cellular products. Cytotherapy. 2024;26(2):201–9.
  • 42. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J lmmunological Methods. 1983; 65:55–63.
  • 43. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018(6):469–71.
  • 44. Meerloo J van, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Methods in Molecular Biology. 2011. p. 237–47.
  • 45. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23).
  • 46. Kim Y, Lee D, Song D, Kim HM, Kim SY. Biocompatibility and bioactivity of set direct pulp capping materials on human dental pulp stem cells. Materials (Basel). 2020;13(18):1–11.
  • 47. Pedano MS, Li X, Li S, Sun Z, Cokic SM, Putzeys E, et al. Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dent Mater [Internet]. 2018;34(5):797–808. Available from: http://dx.doi.org/10.1016/j.dental.2018.02.005
  • 48. Rodriguez LG, Wu X, Guan JL. Wound-healing assay. Methods Mol Biol. 2005;99(1):665–706.
  • 49. Jonkman JEN, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. Cell Adhesion & Migration an introduction to the wound healing assay using livecell microscopy an introduction to the wound healing assay using livecell microscopy. Cell Adhes Migr. 2014;8(5):440–51.
  • 50. Wang X, Decker CC, Zechner L, Krstin S, Wink M. In vitro wound healing of tumor cells: Inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol Toxicol. 2019;20(1):1–12.
  • 51. Kauanova S, Urazbayev A, Vorobjev I. The Frequent Sampling of Wound Scratch Assay Reveals the “Opportunity” Window for Quantitative Evaluation of Cell Motility-Impeding Drugs. Front Cell Dev Biol. 2021;9(March):1–14.
  • 52. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995; 1848:39–51.
  • 53. Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis [Internet]. 2022;27(7–8):482–508. Available from: https://doi.org/10.1007/s10495-022-01735-y
  • 54. Van Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM. Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31(1):1–9.
  • 55. Bernar A, Gebetsberger JV, Bauer M, Streif W, Schirmer M. Optimization of the Alizarin Red S Assay by Enhancing Mineralization of Osteoblasts. Int J Mol Sci. 2023;24(1).
  • 56. Bensimon-Brito A, Cardeira J, Dionísio G, Huysseune A, Cancela ML, Witten PE. Revisiting in vivo staining with alizarin red S - A valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Dev Biol [Internet]. 2016;16(1). Available from: http://dx.doi.org/10.1186/s12861-016-0102-4
  • 57. Cao Y, Song M, Kim E, Shon W, Chugal N, Bogen G, et al. Pulp-dentin regeneration: Current state and future prospects. J Dent Res. 2015;94(11):1544–51.
  • 58. Rodrigues EM, Cornélio ALG, Mestieri LB, Fuentes ASC, Salles LP, Rossa-Junior C, et al. Human dental pulp cells response to mineral trioxide aggregate (MTA) and MTA Plus: cytotoxicity and gene expression analysis. Int Endod J. 2017;50(8):780–9.
  • 59. Lee JB, Park SJ, Kim HH, Kwon YS, Lee KW, Min KS. Physical properties and biological/odontogenic effects of an experimentally developed fast-setting α-tricalcium phosphate-based pulp capping material. BMC Oral Health. 2014;14(1):1–11.
  • 60. Alberts, Alberts B, Johnson A, Lewis J, Raff M, Roberts K, et al. Molecular biology of the cell. 4th editio. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and PW, editor. New York: Garland Science; 2002.
  • 61. Ginzinger DG. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp Hematol. 2002;30(6):503–12.
  • 62. Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol. 2009;67(1):6–20.
  • 63. Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes (Basel). 2022;13(12).
  • 64. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44(5):619–26.
There are 64 citations in total.

Details

Primary Language English
Subjects Restorative Dentistry
Journal Section Review
Authors

Esra Baltacıoğlu Gundogdu 0000-0003-1203-4147

Ramazan Gundogdu 0000-0001-5230-2121

Publication Date December 23, 2024
Submission Date June 3, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Baltacıoğlu Gundogdu E, Gundogdu R. Bioactivity Assessment of Pulp Capping Biomaterials: In vitro Approaches. Selcuk Dent J. 2024;11(3):362-8.