Review
BibTex RIS Cite

Kompozit Rezinlerde Güncel Gelişmeler

Year 2025, Volume: 12 Issue: 1, 137 - 143, 21.04.2025
https://doi.org/10.15311/selcukdentj.1472498

Abstract

Amalgama alternatif olarak üretilen ve uzun yıllardan beri dolgu materyali olarak kullanılan kompozit rezinler, formülasyonlarındaki değişiklikler ile geliştirilen fiziksel özellikleri, diş sert dokularına adezyonları ve geniş renk skalasına sahip estetik görünümleri ile tartışılmaz bir üstünlüğe sahiptirler. Klinisyenler tarafından sıklıkla tercih edilen restoratif materyallerden biri olan kompozit rezinler diş renginde olmaları, civa içermemeleri, ısı iletkenliklerinin düşük olması, diş dokularına bağlanabilme yetenekleri, adezyon sayesinde nispeten azalmış kenar sızıntıları, konservatif kavite preperasyonuna izin vermeleri, çürük temizlendikten sonra geriye kalan diş dokularını desteklemeleri, restorasyonun tek seansta bitirilebilmesi, porselen ve altın restorasyonlara oranla daha ekonomik olmaları gibi avantajlara sahiptirler. Tüm bu avantajlarının yanı sıra bu materyallerin uygulamalarının teknik hassasiyet gerektirmesi, ısısal genleşme katsayılarının yüksek olması, elastisite modüllerinin düşük olması, polimerizasyon büzülmesi göstermeleri, streslerin yoğun olduğu bölgelerde aşınmaya karşı dirençlerinin düşük olması ve artık monomer kalma ihtimali gibi bazı olumsuz özellikleri de mevcuttur. Son yıllarda üretici firmalar kompozit rezinlerin bu olumsuz özelliklerinin üstesinden gelebilmek amacıyla materyal içeriğinde çeşitli modifikasyonlar yapmıştır. Kompozit rezin materyallerdeki organik matriks içeriğinin değiştirilmesi, nanopartikül ve biyoaktif materyallerin eklenmesi, adezyon özelliklerinin geliştirilmesi, polimerizasyon sistemlerinin değiştirilmesi, biyomimetik diş hekimliği ve doku mühendisliğindeki gelişmeler neticesinde “akıllı materyaller” üretilmesi bu amaçla yapılan bazı modifikasyonlardır. Bu derlemenin amacı kompozit materyaller ile ilgili mevcut literatürü pekiştirmek ve son gelişmeleri özetlemektir.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Willems G, Lambrechts P, Braem M, Vanherle G. Composite resins in the 21st century. Quintessence Int. 1993; 24(9):641.
  • 2. Altun C. Kompozit dolgu materyallerinde son gelişmeler. Gülhane Tıp Derg. 2005; 47(1): 77-82.
  • 3. Craig RG, Powers J, Wataha J. Direct esthetic restorative materials. Res Dent Mater. 2000; 244-267.
  • 4. Dayangaç B. Kompozit Rezin Restorasyonlar. Güneş Kitabevi LTD. Şti. 2000; 1(20): 74-84.
  • 5. Yoshinaga K, Yoshihara K, Yoshida Y. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA. Dent Mater. 2021; 37(6): 391-398.
  • 6. Asmussen, E, Peutzfeldt A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1998; 14(1): 51-56.
  • 7. Peutzfeldt, A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997; 105(2): 97-116.
  • 8. Tarumi H, Imazato S, Narimatsu M, Matsuo M, Ebisu S. Estrogenicity of fissure sealants and adhesive resins determined by reporter gene assay. J Dent Res. 2000; 79(11): 1838-1843.
  • 9. Landuyt KLV, Nawrot T, Geebelen B, Munck JD, Snauwaert J, Yoshihara K, et al. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater. 2011; 27(8): 723-747.
  • 10. Flávia Gonçalves F, Caio LN, Azevedo CLN, Ferracane JL, Braga RR. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater. 2011; 27(6): 520-526.
  • 11. Barszczewska-Rybarek IM, MartaWC, Grzegorz C. Novel urethane-dimethacrylate monomers and compositions for use as matrices in dental restorative materials. Int J Mol Sci. 2020; 21(7): 2644.
  • 12. Jun SK, Cha JR, Knowles JC, Kim HW, Lee JH, Lee HH. Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dent Mater. 2020; 36(1): 157-166.
  • 13. Featherstone JD. Dental restorative materials containing quaternary ammonium compounds have sustained antibacterial action. J Am Dent Assoc. 2022.
  • 14. Kirschner J, Szillat F, Bouzrati-Zerelli M, Becht JM, Klee JE, Lalevée J. Sulfinates and sulfonates as high-performance co-initiators in CQ based systems: Towards aromatic amine-free systems for dental restorative materials. Dent Mater. 2020; 36(2): 187-196.
  • 15. Van der Laan HL, Zajdowicz SL, Kuroda K, Bielajew BJ, Davidson TA, Gardinier J, Kohn DH, et al. Biological and mechanical evaluation of novel prototype dental composites. J Dent Res. 2019; 98(1): 91-97.
  • 16. Jia W, Lau GY, Huang W, Zhang C, Tomsia AP, Fu Q. Cellular response to 3‐D printed bioactive silicate and borosilicate glass scaffolds. J Biomed Mater Res B: Appl Biomater. 2019; 107(3): 818-824.
  • 17. Wang Z, Sa Y, Sauro S, Chen H, Xing W, Ma X, et al. Effect of desensitising toothpastes on dentinal tubule occlusion: a dentine permeability measurement and SEM in vitro study. J Dent. 2010; 38(5): 400-410.
  • 18. Bakry AS, Abbassy MA, Alharkan HF, Basuhail S, Al-Ghamdi K, Hill R. A novel fluoride containing bioactive glass paste is capable of re-mineralizing early caries lesions. Materials. 2018; 11(9): 1636.
  • 19. Par M, Tarle Z, Hickel R, Ilie N. Polymerization kinetics of experimental bioactive composites containing bioactive glass. J Dent. 2018; 76: 83-88.
  • 20. Xu YT, Wu Q, Chen YM, Smales RJ, Shi SY, Wang MT. Antimicrobial effects of a bioactive glass combined with fluoride or triclosan on Streptococcus mutans biofilm. Arch Oral Biol. 2015; 60(7): 1059-1065.
  • 21. Bansal R, Burgess J, Lawson NC. Wear of an enhanced resin-modified glass-ionomer restorative material. Am J Dent. 2016; 29(3): 171-174.
  • 22. Garoushi S, Vallittu PK, Lassila L. Characterization of fluoride releasing restorative dental materials. Dent Mater J. 2018; 37(2): 293-300.
  • 23. Croll TP, Berg JH, Donly KJ. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite. Compendium. 2015; 36(1): 1-8.
  • 24. Liu Y, Kohno T, Tsuboi R, Kitagawa H, Imazato S. Acidity-induced release of zinc ion from BioUnionTM filler and its inhibitory effects against Streptococcus mutans. Dent Mater J. 2020; 39(4): 547-553.
  • 25. Zhang, N, Xie C. Polymerization shrinkage, shrinkage stress, and mechanical evaluation of novel prototype dental composite resin. Dent Mater J. 2020; 39(6): 1064-1071.
  • 26. Klee, JE, Renn C, Elsner O. Development of novel polymer technology for a new class of restorative dental materials. J Adhes Dent. 2020; 22(1): 35-45.
  • 27. François P, Remadi A, Le Goff S, Abdel-Gawad S, Attal JP, Dursun E. Flexural properties and dentin adhesion in recently developed self-adhesive bulk-fill materials. J Oral Sci. 2021; 63(2): 139-144.
  • 28. Raju R, Rajan G, Farrar P, Prusty BG. Dimensional stability of short fibre reinforced flowable dental composites. Sci Rep. 2021; 11(1): 4697.
  • 29. Burujeny SB, Yeganeh H, Atai M, Gholami H, Sorayya M. Bactericidal dental nanocomposites containing 1, 2, 3-triazolium-functionalized POSS additive prepared through thiol-ene click polymerization. Dent Mater. 2017; 33(1): 119-131.
  • 30. Lu J, Liu Z, Wang K, Gu M, Peng X, Zhang Y, et al. Odontogenesis by Endocytosis of Peptide Embedding Bioactive Glass Composite. J Dent Res. 2022; 101(9): 1055-1063.
  • 31. Wang QQ, Wu LP, Zhang S, Tao Y, Li YZ, Zhou QL, et al. Assembly of Ultralong Hydroxyapatite Nanowires into Enamel-like Materials. J Dent Res. 2022; 101(10): 1181-1189.
  • 32. Schnaider L, Ghosh M, Bychenko D, Grigoriants I, Ya’ari S, Antsel TS, et al. Enhanced nanoassembly incorporated antibacterial composite materials. ACS Appl Mater Interfaces. 2019; 11(24): 21334-21342.
  • 33. Lin GSS, Cher CY, Cheah KK, Noorani TY, Ismail NH, Ghani NRNA. Novel dental composite resin derived from rice husk natural biowaste: A systematic review and recommendation for future advancement. J Est Restor Dent. 2022; 34(3): 503-511.
  • 34. Li Y, Zhang D, Wan Z, Yang X, Cai Q. Dental resin composites with improved antibacterial and mineralization properties via incorporating zinc/strontium-doped hydroxyapatite as functional fillers. Biomed Mater. 2022; 17(4): 045002.
  • 35. Castro-Rojas MA, Vega-Cantu YI, Cordell GA, Rodriguez-Garcia A. Dental applications of carbon nanotubes. Molecules. 2021; 26(15): 4423.
  • 36. Arif W, Rana NF, Saleem I, Tanweer T, Khan MJ, Alshareef SA, et al. Antibacterial Activity of Dental Composite with Ciprofloxacin Loaded Silver Nanoparticles. Molecules. 2022; 27(21): 7182.
  • 37. Alrahlah A, Al-Odayni AB, Saeed WS, Al-Kahtani A, Alkhtani FM, Al-Mafleh NS. Water Sorption, Water Solubility, and Rheological Properties of Resin-Based Dental Composites Incorporating Immobilizable Eugenol-Derivative Monomer. Polymers. 2022; 14(3): 366.
  • 38. Mora P, Nunwong C, Sriromreun P, Kaewsriprom P, Srisorrachatr U, Rimdusit S, et al. High Performance Composites Based on Highly Filled Glass Fiber-Reinforced Polybenzoxazine for Post Application. Polymers. 2022; 14(20): 4321.
  • 39. Ritto FP, da Silva EM, Borges ALS, Borges MAP, Sampaio-Filho HR. Fabrication and characterization of low-shrinkage dental composites containing montmorillonite nanoclay. Odontology. 2022; 110(1): 35-43.
  • 40. Sabir M, Ali A, Siddiqui U, Muhammad, N Khan AS, Sharif F, et al. Synthesis and characterization of cellulose/hydroxyapatite based dental restorative composites. J Biomater Sci Polym Ed. 2020; 31(14): 1806-1819.
  • 41. Kim RJY, Kim YJ, Choi NS, Lee IB. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent. 2015; 43(4): 430-439.
  • 42. Fronza BM, Makishi P, Sadr A, Shimada Y, Sumi Y, Tagami J, et al. Evaluation of bulk-fill systems: microtensile bond strength and non-destructive imaging of marginal adaptation. Braz Oral Res. 2018; 32.
  • 43. De Lacerda LR, Bossardi M, Mitterhofer WJS, de Carvalho FG, Carlo HL, Piva E, et al. New generation bulk-fill resin composites: Effects on mechanical strength and fracture reliability. J Mech Behav Biomed Mater. 2019; 96: 214-218.
  • 44. AR Aleixo, RD Guiraldo, APP Fugolin, SB Berger, RLX Consani, AB Correr, et al. Evaluation of contraction stress, conversion degree, and cross-link density in low-shrinkage composites. Photomed Laser Surg. 2014; 32(5): 267-273.
  • 45. Sousa-Lima RX, Silva LJA, Chaves LVF, Geraldeli S, Alonso RCB, Borges BCD. Extensive assessment of the physical, mechanical, and adhesion behavior of a low-viscosity bulk fill composite and a traditional resin composite in tooth cavities. Oper Dent. 2017; 42(5): 159-166.
  • 46. Tsujimoto A, Nagura Y, Barkmeier WW. Simulated cuspal deflection and flexural properties of high viscosity bulk-fill and conventional resin composites. J Mech Behav Biomed Mater. 2018; 87: 111-118.
  • 47. Perdigão J, Araujo E, Ramos RQ, Gomes G, Pizzolotto L. Adhesive dentistry: Current concepts and clinical considerations. J Esthet Restor Dent. 2021; 33(1): 51-68.
  • 48. Suh YR, Ahn JS, Ju SW, Kim KM. Influences of filler content and size on the color adjustment potential of nonlayered resin composites. Dent Mater J. 2017; 36(1): 35-40.
  • 49. Iyer RS, Babani VR, Yaman P, Dennison J. Color match using instrumental and visual methods for single, group, and multi‐shade composite resins. J Esthet Restor Dent. 2021; 33(2): 394-400.
  • 50. Christensen G. New, innovative restorative resins appear promising. Clin Rep. 2019; 12(4): 1-3.
  • 51. Sulaiman TA, Rodgers B, Suliman AA, Johnston WM. Color and translucency stability of contemporary resin‐based restorative materials. J Esthet Restor Dent. 2021; 33(6): 899-905.

CURRENT ADVANCES IN COMPOSITE RESINS

Year 2025, Volume: 12 Issue: 1, 137 - 143, 21.04.2025
https://doi.org/10.15311/selcukdentj.1472498

Abstract

Composite resins, which are produced as an alternative to dental amalgam and have been used as filling materials for many years, have an indisputable superiority with their improved physical properties through changes in their formulations, adhesion to tooth hard tissues, and aesthetic appearances with a wide range of colors. Composite resins, one of the restorative materials frequently preferred by clinicians, have advantages such as being tooth-colored, mercury-free, having low thermal conductivity, ability to bond to tooth tissues, relatively reduced marginal leakage due to adhesion, allowing conservative cavity preparation, supporting the remaining tooth tissues after caries removal, completing the restoration in a single session, and being more economical compared to porcelain and gold restorations. In addition to all these advantages, these materials also have some negative properties such as requiring technical precision in their applications, high coefficient of thermal expansion, low modulus of elasticity, exhibiting polymerization shrinkage, low resistance to wear in areas with intense stresses, and the possibility of residual monomer remaining. In recent years, manufacturers have made various modifications to overcome these negative properties of composite resins. Some modifications made for this purpose include changing the organic matrix content in composite resin materials, adding nanoparticles and bioactive materials, improving adhesion properties, changing polymerization systems, and producing "smart materials" as a result of developments in biomimetic dentistry and tissue engineering. The purpose of this review is to strengthen the existing literature on composite materials and summarize the latest developments.

Project Number

-

References

  • 1. Willems G, Lambrechts P, Braem M, Vanherle G. Composite resins in the 21st century. Quintessence Int. 1993; 24(9):641.
  • 2. Altun C. Kompozit dolgu materyallerinde son gelişmeler. Gülhane Tıp Derg. 2005; 47(1): 77-82.
  • 3. Craig RG, Powers J, Wataha J. Direct esthetic restorative materials. Res Dent Mater. 2000; 244-267.
  • 4. Dayangaç B. Kompozit Rezin Restorasyonlar. Güneş Kitabevi LTD. Şti. 2000; 1(20): 74-84.
  • 5. Yoshinaga K, Yoshihara K, Yoshida Y. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA. Dent Mater. 2021; 37(6): 391-398.
  • 6. Asmussen, E, Peutzfeldt A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1998; 14(1): 51-56.
  • 7. Peutzfeldt, A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997; 105(2): 97-116.
  • 8. Tarumi H, Imazato S, Narimatsu M, Matsuo M, Ebisu S. Estrogenicity of fissure sealants and adhesive resins determined by reporter gene assay. J Dent Res. 2000; 79(11): 1838-1843.
  • 9. Landuyt KLV, Nawrot T, Geebelen B, Munck JD, Snauwaert J, Yoshihara K, et al. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater. 2011; 27(8): 723-747.
  • 10. Flávia Gonçalves F, Caio LN, Azevedo CLN, Ferracane JL, Braga RR. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater. 2011; 27(6): 520-526.
  • 11. Barszczewska-Rybarek IM, MartaWC, Grzegorz C. Novel urethane-dimethacrylate monomers and compositions for use as matrices in dental restorative materials. Int J Mol Sci. 2020; 21(7): 2644.
  • 12. Jun SK, Cha JR, Knowles JC, Kim HW, Lee JH, Lee HH. Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dent Mater. 2020; 36(1): 157-166.
  • 13. Featherstone JD. Dental restorative materials containing quaternary ammonium compounds have sustained antibacterial action. J Am Dent Assoc. 2022.
  • 14. Kirschner J, Szillat F, Bouzrati-Zerelli M, Becht JM, Klee JE, Lalevée J. Sulfinates and sulfonates as high-performance co-initiators in CQ based systems: Towards aromatic amine-free systems for dental restorative materials. Dent Mater. 2020; 36(2): 187-196.
  • 15. Van der Laan HL, Zajdowicz SL, Kuroda K, Bielajew BJ, Davidson TA, Gardinier J, Kohn DH, et al. Biological and mechanical evaluation of novel prototype dental composites. J Dent Res. 2019; 98(1): 91-97.
  • 16. Jia W, Lau GY, Huang W, Zhang C, Tomsia AP, Fu Q. Cellular response to 3‐D printed bioactive silicate and borosilicate glass scaffolds. J Biomed Mater Res B: Appl Biomater. 2019; 107(3): 818-824.
  • 17. Wang Z, Sa Y, Sauro S, Chen H, Xing W, Ma X, et al. Effect of desensitising toothpastes on dentinal tubule occlusion: a dentine permeability measurement and SEM in vitro study. J Dent. 2010; 38(5): 400-410.
  • 18. Bakry AS, Abbassy MA, Alharkan HF, Basuhail S, Al-Ghamdi K, Hill R. A novel fluoride containing bioactive glass paste is capable of re-mineralizing early caries lesions. Materials. 2018; 11(9): 1636.
  • 19. Par M, Tarle Z, Hickel R, Ilie N. Polymerization kinetics of experimental bioactive composites containing bioactive glass. J Dent. 2018; 76: 83-88.
  • 20. Xu YT, Wu Q, Chen YM, Smales RJ, Shi SY, Wang MT. Antimicrobial effects of a bioactive glass combined with fluoride or triclosan on Streptococcus mutans biofilm. Arch Oral Biol. 2015; 60(7): 1059-1065.
  • 21. Bansal R, Burgess J, Lawson NC. Wear of an enhanced resin-modified glass-ionomer restorative material. Am J Dent. 2016; 29(3): 171-174.
  • 22. Garoushi S, Vallittu PK, Lassila L. Characterization of fluoride releasing restorative dental materials. Dent Mater J. 2018; 37(2): 293-300.
  • 23. Croll TP, Berg JH, Donly KJ. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite. Compendium. 2015; 36(1): 1-8.
  • 24. Liu Y, Kohno T, Tsuboi R, Kitagawa H, Imazato S. Acidity-induced release of zinc ion from BioUnionTM filler and its inhibitory effects against Streptococcus mutans. Dent Mater J. 2020; 39(4): 547-553.
  • 25. Zhang, N, Xie C. Polymerization shrinkage, shrinkage stress, and mechanical evaluation of novel prototype dental composite resin. Dent Mater J. 2020; 39(6): 1064-1071.
  • 26. Klee, JE, Renn C, Elsner O. Development of novel polymer technology for a new class of restorative dental materials. J Adhes Dent. 2020; 22(1): 35-45.
  • 27. François P, Remadi A, Le Goff S, Abdel-Gawad S, Attal JP, Dursun E. Flexural properties and dentin adhesion in recently developed self-adhesive bulk-fill materials. J Oral Sci. 2021; 63(2): 139-144.
  • 28. Raju R, Rajan G, Farrar P, Prusty BG. Dimensional stability of short fibre reinforced flowable dental composites. Sci Rep. 2021; 11(1): 4697.
  • 29. Burujeny SB, Yeganeh H, Atai M, Gholami H, Sorayya M. Bactericidal dental nanocomposites containing 1, 2, 3-triazolium-functionalized POSS additive prepared through thiol-ene click polymerization. Dent Mater. 2017; 33(1): 119-131.
  • 30. Lu J, Liu Z, Wang K, Gu M, Peng X, Zhang Y, et al. Odontogenesis by Endocytosis of Peptide Embedding Bioactive Glass Composite. J Dent Res. 2022; 101(9): 1055-1063.
  • 31. Wang QQ, Wu LP, Zhang S, Tao Y, Li YZ, Zhou QL, et al. Assembly of Ultralong Hydroxyapatite Nanowires into Enamel-like Materials. J Dent Res. 2022; 101(10): 1181-1189.
  • 32. Schnaider L, Ghosh M, Bychenko D, Grigoriants I, Ya’ari S, Antsel TS, et al. Enhanced nanoassembly incorporated antibacterial composite materials. ACS Appl Mater Interfaces. 2019; 11(24): 21334-21342.
  • 33. Lin GSS, Cher CY, Cheah KK, Noorani TY, Ismail NH, Ghani NRNA. Novel dental composite resin derived from rice husk natural biowaste: A systematic review and recommendation for future advancement. J Est Restor Dent. 2022; 34(3): 503-511.
  • 34. Li Y, Zhang D, Wan Z, Yang X, Cai Q. Dental resin composites with improved antibacterial and mineralization properties via incorporating zinc/strontium-doped hydroxyapatite as functional fillers. Biomed Mater. 2022; 17(4): 045002.
  • 35. Castro-Rojas MA, Vega-Cantu YI, Cordell GA, Rodriguez-Garcia A. Dental applications of carbon nanotubes. Molecules. 2021; 26(15): 4423.
  • 36. Arif W, Rana NF, Saleem I, Tanweer T, Khan MJ, Alshareef SA, et al. Antibacterial Activity of Dental Composite with Ciprofloxacin Loaded Silver Nanoparticles. Molecules. 2022; 27(21): 7182.
  • 37. Alrahlah A, Al-Odayni AB, Saeed WS, Al-Kahtani A, Alkhtani FM, Al-Mafleh NS. Water Sorption, Water Solubility, and Rheological Properties of Resin-Based Dental Composites Incorporating Immobilizable Eugenol-Derivative Monomer. Polymers. 2022; 14(3): 366.
  • 38. Mora P, Nunwong C, Sriromreun P, Kaewsriprom P, Srisorrachatr U, Rimdusit S, et al. High Performance Composites Based on Highly Filled Glass Fiber-Reinforced Polybenzoxazine for Post Application. Polymers. 2022; 14(20): 4321.
  • 39. Ritto FP, da Silva EM, Borges ALS, Borges MAP, Sampaio-Filho HR. Fabrication and characterization of low-shrinkage dental composites containing montmorillonite nanoclay. Odontology. 2022; 110(1): 35-43.
  • 40. Sabir M, Ali A, Siddiqui U, Muhammad, N Khan AS, Sharif F, et al. Synthesis and characterization of cellulose/hydroxyapatite based dental restorative composites. J Biomater Sci Polym Ed. 2020; 31(14): 1806-1819.
  • 41. Kim RJY, Kim YJ, Choi NS, Lee IB. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent. 2015; 43(4): 430-439.
  • 42. Fronza BM, Makishi P, Sadr A, Shimada Y, Sumi Y, Tagami J, et al. Evaluation of bulk-fill systems: microtensile bond strength and non-destructive imaging of marginal adaptation. Braz Oral Res. 2018; 32.
  • 43. De Lacerda LR, Bossardi M, Mitterhofer WJS, de Carvalho FG, Carlo HL, Piva E, et al. New generation bulk-fill resin composites: Effects on mechanical strength and fracture reliability. J Mech Behav Biomed Mater. 2019; 96: 214-218.
  • 44. AR Aleixo, RD Guiraldo, APP Fugolin, SB Berger, RLX Consani, AB Correr, et al. Evaluation of contraction stress, conversion degree, and cross-link density in low-shrinkage composites. Photomed Laser Surg. 2014; 32(5): 267-273.
  • 45. Sousa-Lima RX, Silva LJA, Chaves LVF, Geraldeli S, Alonso RCB, Borges BCD. Extensive assessment of the physical, mechanical, and adhesion behavior of a low-viscosity bulk fill composite and a traditional resin composite in tooth cavities. Oper Dent. 2017; 42(5): 159-166.
  • 46. Tsujimoto A, Nagura Y, Barkmeier WW. Simulated cuspal deflection and flexural properties of high viscosity bulk-fill and conventional resin composites. J Mech Behav Biomed Mater. 2018; 87: 111-118.
  • 47. Perdigão J, Araujo E, Ramos RQ, Gomes G, Pizzolotto L. Adhesive dentistry: Current concepts and clinical considerations. J Esthet Restor Dent. 2021; 33(1): 51-68.
  • 48. Suh YR, Ahn JS, Ju SW, Kim KM. Influences of filler content and size on the color adjustment potential of nonlayered resin composites. Dent Mater J. 2017; 36(1): 35-40.
  • 49. Iyer RS, Babani VR, Yaman P, Dennison J. Color match using instrumental and visual methods for single, group, and multi‐shade composite resins. J Esthet Restor Dent. 2021; 33(2): 394-400.
  • 50. Christensen G. New, innovative restorative resins appear promising. Clin Rep. 2019; 12(4): 1-3.
  • 51. Sulaiman TA, Rodgers B, Suliman AA, Johnston WM. Color and translucency stability of contemporary resin‐based restorative materials. J Esthet Restor Dent. 2021; 33(6): 899-905.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Dental Materials and Equipment, Restorative Dentistry
Journal Section Review
Authors

Hacer Balkaya 0000-0001-9180-5610

Halime Çetiner 0000-0003-0852-8136

Sezer Demirbuğa 0000-0001-6013-974X

Project Number -
Publication Date April 21, 2025
Submission Date April 25, 2024
Acceptance Date June 4, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Balkaya H, Çetiner H, Demirbuğa S. Kompozit Rezinlerde Güncel Gelişmeler. Selcuk Dent J. 2025;12(1):137-43.