Research Article
BibTex RIS Cite

Investigation of Different Miniscrew-Supported Mesialization Protocols with Finite Element Analysis

Year 2025, Volume: 12 Issue: 2, 234 - 239, 22.08.2025
https://doi.org/10.15311/selcukdentj.1522384

Abstract

Background: To examine the force and stress distributions caused by two different mesialization methods in dentoalveolar structures in cases of congenital bilateral maxillary lateral incisor agenesis (MLIA) with finite element analysis (FEA).
Materials and Methods: Two different models were created using FEA. In both models, miniscrews were placed in the palatal region. In the first model, 450 g of force was applied to the miniscrews over the transpalatal arch with the aid of elastic chain. In the second model, the central teeth and miniscrews were connected by using a minimum anchorage unit and 450 g of force was applied to all teeth with the aid of elastic chain over the archwire. For both models, von Mises stress, maximum and minimum principal stresses, and displacement values were recorded.
Results: In the first model, the maximum Von Mises stress was observed in the cervix of the miniscrews due to the direct application of the force to the miniscrews. In the second model, the stress was not as intense as in the first model since the force was not applied directly. The greatest displacement was observed in the maxillary first molars in the first model and in the canines in the second model. Compressive and tensile stresses were observed in the maxillary anterior teeth in the second model due to the effect of the elastic chain, while the tensile stress in the maxillary anterior teeth in the first model was almost zero. The amount of transverse and sagittal displacement in the maxillary teeth was higher in the second model compared to the first model.
Conclusion: The maximum stress was in the miniscrews in the first model and in the maxillary anterior teeth in the second model. The greatest displacement was observed in the first molars in the first model and in the canines in the second model.
Key words: Finite element analysis, congenital maxillary lateral incisor agenesis, mesialization, miniscrew

Ethical Statement

The study protocol was approved by Adıyaman University Non-Interventional Clinical Research Ethics Committee (No: 2021/05-3).

Supporting Institution

The study was supported by Adıyaman University Scientific Research Project Department (Project Code: DHFDUP/2021-0003).

Project Number

DHFDUP/2021-0003

References

  • 1. Walker JD, Pinkham JR, Jakobsen J. Comparison of undergraduate pediatric dentistry clinical procedures from 1982–83 through 1996–97. J Dent Child. 1999;66(6):411-4.
  • 2. Bailleul-Forestier I, Molla M, Verloes A, Berdal A. The genetic basis of inherited anomalies of the teeth: Part 1: Clinical and molecular aspects of non-syndromic dental disorders. Eur J Med Genet. 2008;51(4):273-91.
  • 3. Robertsson S, Mohlin B. The congenitally missing upper lateral incisor. A retrospective study of orthodontic space closure versus restorative treatment. Eur J Orthod. 2000;22(6):697-710.
  • 4. Kavadia S, Papadiochou S, Papadiochos I, Zafiriadis L. Agenesis of maxillary lateral incisors: A global overview of the clinical problem. ORTHODONTICS: The Art & Practice of Dentofacial Enhancement. 2011;12(4).
  • 5. Fekonja A. Hypodontia in orthodontically treated children. Eur J Orthod. 2005;27(5):457-60.
  • 6. Fujita Y, Hidaka A, Nishida I, Morikawa K, Hashiguchi D, Maki K. Developmental anomalies of permanent lateral incisors in young patients. J Clin Pediat Dent. 2009;33(3):211-6.
  • 7. Altug-Atac AT, Erdem D. Prevalence and distribution of dental anomalies in orthodontic patients. Am J Orthod Dentofac Orthop. 2007;131(4):510-4.
  • 8. Polder BJ, Van’t Hof MA, Van der Linden FP, Kuijpers‐Jagtman AM. A meta‐analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol. 2004;32(3):217-26.
  • 9. Westgate E, Waring D, Malik O, Darcey J. Management of missing maxillary lateral incisors in general practice: space opening versus space closure. Br Dent J. 2019;226(6):400-6.
  • 10. Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg. 2007;103(5):e6-e15.
  • 11. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult. 1998;13(3):201-9.
  • 12. Yettram A, Wright K, Pickard H. Finite element stress analysis of the crowns of normal and restored teeth. J Dent Res. 1976;55(6):1004-11.
  • 13. Middleton J, Jones M, Wilson A. The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofac Orthop. 1996;109(2):155-62.
  • 14. Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofac Orthop. 1987;92(6):499-505.
  • 15. Schneider U, Moser L, Fornasetti M, Piattella M, Siciliani G. Esthetic evaluation of implants vs canine substitution in patients with congenitally missing maxillary lateral incisors: are there any new insights? Am J Orthod Dentofac Orthop. 2016;150(3):416-24.
  • 16. Nakamura M, Kawanabe N, Kataoka T, Murakami T, Yamashiro T, Kamioka H. Comparative evaluation of treatment outcomes between temporary anchorage devices and Class III elastics in Class III malocclusions. Am J Orthod Dentofac Orthop. 2017;151(6):1116-24.
  • 17. Ludwig B, Glasl B, Bowman SJ, Wilmes B, Kinzinger G, Lisson JA. Anatomical guidelines for miniscrew insertion: palatal sites. J Clin Orthod. 2011;45(8):433.
  • 18. Jung BA, Wehrbein H, Heuser L, Kunkel M. Vertical palatal bone dimensions on lateral cephalometry and cone‐beam computed tomography: implications for palatal implant placement. Clin Oral Implants Res. 2011;22(6):664-8.
  • 19. Lai Rf, Zou H, Kong Wd, Lin W. Applied anatomic site study of palatal anchorage implants using cone beam computed tomography. Int J Oral Sci. 2010;2(2):98-104.
  • 20. Balhoff DA, Shuldberg M, Hagan JL, Ballard RW, Armbruster PC. Force decay of elastomeric chains–a mechanical design and product comparison study. J Orthod. 2011;38(1):40-47.
  • 21. Samuels R, Orth M, Rudge S, Mair L. A comparison of the rate of space closure using a nickel-titanium spring and an elastic module: a clinical study. Am J Orthod Dentofac Orthop. 1993;103(5):464-7.
  • 22. De Genova DC, McInnes-Ledoux P, Weinberg R, Shaye R. Force degradation of orthodontic elastomeric chains--a product comparison study. Am J Orthod. 1985;87(5):377-84.
  • 23. Tosun Y. Sabit ortodontik apareylerin biyomekanik prensipleri. İzmir: Ege Üniversitesi Basımevi. 1999:6-7.
  • 24. Zhang Y, Zhang D, Feng C. A three-dimensional finite element analysis for the biomechanical characteristics of orthodontic anchorage micro-implant. Shanghai kou qiang yi xue= Shanghai journal of stomatology. 2005;14(3):281-3.
  • 25. Bobak V, Christiansen RL, Hollister SJ, Kohn DH. Stress-related molar responses to the transpalatal arch: a finite element analysis. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 1997;112(5):512-8.
  • 26. McLaughlin RP, Bennett JC, Trevisi HJ. Systemized orthodontic treatment mechanics. 2001.
  • 27. Gallas M, Abeleira M, Fernandez J, Burguera M. Three-dimensional numerical simulation of dental implants as orthodontic anchorage. Eur J Orthod. 2005;27(1):12-6.
  • 28. Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2011;139(1):e59-e71.
  • 29. VONDERAHE G. Postretention status of maxillary incisors with root-end resorption. Angle Orthod. 1973;43(3):247-55.
  • 30. Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. Eur J Orthod. 1988;10(1):30-8.
  • 31. Remington DN, Joondeph DR, Årtun J, Riedel RA, Chapko MK. Long-term evaluation of root resorption occurring during orthodontic treatment. Am J Orthod Dentofac Orthop. 1989;96(1):43-6.
  • 32. Kjær I. Morphological characteristics of dentitions developing excessive root resorption during orthodontic treatment. Eur J Orthod. 1995;17(1):25-34.

Farklı minivida destekli total mezyalizayon metotlarının sonlu elemanlar analizi ile incelenmesi

Year 2025, Volume: 12 Issue: 2, 234 - 239, 22.08.2025
https://doi.org/10.15311/selcukdentj.1522384

Abstract

Amaç: Konjenital çift taraflı maksiller lateral kesici eksikliği (KÇML) vakalarında iki farklı mezyalizasyon metodunun sebep olduğu kuvvet ve stres dağılımının sonlu elemanlar analizi (SEA) ile araştırılması.
Gereç ve Yöntemler: SEA kullanılarak iki farklı model yaratıldı. Birinci modelde 450 g kuvvet transpalatal ark üzerinden elastik zincir yardımıyla minividalara uygulandı. İkinci modelde santral dişler minividalara minimum ankraj ünitesi ile bağlandı ve 450 g kuvvet tüm dişlere elastik zincir yardımıyla ark teli üzerinden uygulandı. Her iki model için von Mises stresi, maksimum ve minimum ana stresleri ve yer değiştirme değerleri kaydedildi. Bulgular: İlk modelde maksimum von Mises stresi kuvvetin mninividalara direk uygulanması sebebiyle minividanın boyun kısmında gözlendi. İkinci modelde kuvvet direk olarak uygulanmadığı için stres birinci modeldeki kadar yoğun değildi. En yüksek yer değiştirme birinci modelde maksiller birinci molarlardai ikinci modelde ise kaninlerdeydi. İkinci modelde üst ön dişlerde elastik zincirin etkisiyle basma ve çekme gerilmeleri gözlenirken, birinci modelde üst ön dişlerde çekme gerilmesi neredeyse sıfırdı. İkinci modelde üst dişlerdeki enine ve sagittal yer değiştirme miktarı birinci modele göre daha yüksekti.
Sonuç: Maksimum stres birinci modelde mini vidalarda, ikinci modelde ise maksiller ön dişlerdeydi. En büyük yer değiştirme birinci modelde birinci azı dişlerinde, ikinci modelde ise köpek dişlerinde gözlendi.
Anahtar kelimeler: Sonlu elemanlar analizi, konjenital maksiller lateral eksikliği, mezyalizyon, minivida

Ethical Statement

Çalışma protokolü Adıyaman Üniversitesi Girişimsel Olmayan Klinik araştırmalar Etik Kurulu Tarafından onaylanmıştır. (No: 2021/05-3).

Supporting Institution

Çalışma Adıyaman Üniversitesi Bilimsel Araştırma Proje Departmanı tarafından desteklenmiştir (Proje kodu: DHFDUP/2021-0003).

Project Number

DHFDUP/2021-0003

References

  • 1. Walker JD, Pinkham JR, Jakobsen J. Comparison of undergraduate pediatric dentistry clinical procedures from 1982–83 through 1996–97. J Dent Child. 1999;66(6):411-4.
  • 2. Bailleul-Forestier I, Molla M, Verloes A, Berdal A. The genetic basis of inherited anomalies of the teeth: Part 1: Clinical and molecular aspects of non-syndromic dental disorders. Eur J Med Genet. 2008;51(4):273-91.
  • 3. Robertsson S, Mohlin B. The congenitally missing upper lateral incisor. A retrospective study of orthodontic space closure versus restorative treatment. Eur J Orthod. 2000;22(6):697-710.
  • 4. Kavadia S, Papadiochou S, Papadiochos I, Zafiriadis L. Agenesis of maxillary lateral incisors: A global overview of the clinical problem. ORTHODONTICS: The Art & Practice of Dentofacial Enhancement. 2011;12(4).
  • 5. Fekonja A. Hypodontia in orthodontically treated children. Eur J Orthod. 2005;27(5):457-60.
  • 6. Fujita Y, Hidaka A, Nishida I, Morikawa K, Hashiguchi D, Maki K. Developmental anomalies of permanent lateral incisors in young patients. J Clin Pediat Dent. 2009;33(3):211-6.
  • 7. Altug-Atac AT, Erdem D. Prevalence and distribution of dental anomalies in orthodontic patients. Am J Orthod Dentofac Orthop. 2007;131(4):510-4.
  • 8. Polder BJ, Van’t Hof MA, Van der Linden FP, Kuijpers‐Jagtman AM. A meta‐analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol. 2004;32(3):217-26.
  • 9. Westgate E, Waring D, Malik O, Darcey J. Management of missing maxillary lateral incisors in general practice: space opening versus space closure. Br Dent J. 2019;226(6):400-6.
  • 10. Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg. 2007;103(5):e6-e15.
  • 11. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult. 1998;13(3):201-9.
  • 12. Yettram A, Wright K, Pickard H. Finite element stress analysis of the crowns of normal and restored teeth. J Dent Res. 1976;55(6):1004-11.
  • 13. Middleton J, Jones M, Wilson A. The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofac Orthop. 1996;109(2):155-62.
  • 14. Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofac Orthop. 1987;92(6):499-505.
  • 15. Schneider U, Moser L, Fornasetti M, Piattella M, Siciliani G. Esthetic evaluation of implants vs canine substitution in patients with congenitally missing maxillary lateral incisors: are there any new insights? Am J Orthod Dentofac Orthop. 2016;150(3):416-24.
  • 16. Nakamura M, Kawanabe N, Kataoka T, Murakami T, Yamashiro T, Kamioka H. Comparative evaluation of treatment outcomes between temporary anchorage devices and Class III elastics in Class III malocclusions. Am J Orthod Dentofac Orthop. 2017;151(6):1116-24.
  • 17. Ludwig B, Glasl B, Bowman SJ, Wilmes B, Kinzinger G, Lisson JA. Anatomical guidelines for miniscrew insertion: palatal sites. J Clin Orthod. 2011;45(8):433.
  • 18. Jung BA, Wehrbein H, Heuser L, Kunkel M. Vertical palatal bone dimensions on lateral cephalometry and cone‐beam computed tomography: implications for palatal implant placement. Clin Oral Implants Res. 2011;22(6):664-8.
  • 19. Lai Rf, Zou H, Kong Wd, Lin W. Applied anatomic site study of palatal anchorage implants using cone beam computed tomography. Int J Oral Sci. 2010;2(2):98-104.
  • 20. Balhoff DA, Shuldberg M, Hagan JL, Ballard RW, Armbruster PC. Force decay of elastomeric chains–a mechanical design and product comparison study. J Orthod. 2011;38(1):40-47.
  • 21. Samuels R, Orth M, Rudge S, Mair L. A comparison of the rate of space closure using a nickel-titanium spring and an elastic module: a clinical study. Am J Orthod Dentofac Orthop. 1993;103(5):464-7.
  • 22. De Genova DC, McInnes-Ledoux P, Weinberg R, Shaye R. Force degradation of orthodontic elastomeric chains--a product comparison study. Am J Orthod. 1985;87(5):377-84.
  • 23. Tosun Y. Sabit ortodontik apareylerin biyomekanik prensipleri. İzmir: Ege Üniversitesi Basımevi. 1999:6-7.
  • 24. Zhang Y, Zhang D, Feng C. A three-dimensional finite element analysis for the biomechanical characteristics of orthodontic anchorage micro-implant. Shanghai kou qiang yi xue= Shanghai journal of stomatology. 2005;14(3):281-3.
  • 25. Bobak V, Christiansen RL, Hollister SJ, Kohn DH. Stress-related molar responses to the transpalatal arch: a finite element analysis. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 1997;112(5):512-8.
  • 26. McLaughlin RP, Bennett JC, Trevisi HJ. Systemized orthodontic treatment mechanics. 2001.
  • 27. Gallas M, Abeleira M, Fernandez J, Burguera M. Three-dimensional numerical simulation of dental implants as orthodontic anchorage. Eur J Orthod. 2005;27(1):12-6.
  • 28. Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2011;139(1):e59-e71.
  • 29. VONDERAHE G. Postretention status of maxillary incisors with root-end resorption. Angle Orthod. 1973;43(3):247-55.
  • 30. Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. Eur J Orthod. 1988;10(1):30-8.
  • 31. Remington DN, Joondeph DR, Årtun J, Riedel RA, Chapko MK. Long-term evaluation of root resorption occurring during orthodontic treatment. Am J Orthod Dentofac Orthop. 1989;96(1):43-6.
  • 32. Kjær I. Morphological characteristics of dentitions developing excessive root resorption during orthodontic treatment. Eur J Orthod. 1995;17(1):25-34.
There are 32 citations in total.

Details

Primary Language English
Subjects Orthodontics and Dentofacial Orthopaedics
Journal Section Research
Authors

Gülcan Çetin Taşkıran 0000-0001-8980-4440

Mehmet Ali Yavan 0000-0002-2162-060X

Nihal Hamamcı 0000-0002-2997-1754

Project Number DHFDUP/2021-0003
Publication Date August 22, 2025
Submission Date July 25, 2024
Acceptance Date January 29, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

Vancouver Çetin Taşkıran G, Yavan MA, Hamamcı N. Investigation of Different Miniscrew-Supported Mesialization Protocols with Finite Element Analysis. Selcuk Dent J. 2025;12(2):234-9.