Research Article
BibTex RIS Cite

HPLC-ELSD Kullanılarak Çeşitli Hasat Sonrası Klimakterik Meyvelerin Şeker İçeriklerinin Belirlenmesi; Farklı Olgunlaşma Aşamalarında Değerlendirme ve Yöntemin Analitik Eko-ölçek, NEMI, GAPI ve AGREE ile Yeşillik Profilinin Değerlendirilmesi

Year 2025, Volume: 39 Issue: 3, 638 - 648, 27.12.2025
https://doi.org/10.15316/selcukjafsci.1676737

Abstract

Meyvelerdeki ana şeker içeriği diyet açısından çok önemlidir. Bu çalışmada, HPLC-ELSD kullanılarak domates ve muzda farklı olgunlaşma aşamalarında (yeşil, olgunlaşma, olgun ve aşırı olgun) fruktoz, glukoz ve sukroz miktarlarındaki ve toplam şeker içeriğindeki değişiklikler araştırılmıştır. Kromatografik ayırmalar Phenomenex Luna NH2 sabit fazlı (5 μm partikül boyutu, 250 mm x 4,6 mm iç çap, 100 Å) bir HPLC kolonu kullanılarak gerçekleştirilmiş ve asetonitril:su (78:22, v/v) içeren bir mobil faz ile elüe edilmiştir. ELSD sistemi 40°C'lik bir sürüklenme tüpü sıcaklığında çalıştırılmış ve 350 kPa'lık bir nitrojen basıncı kullanılmıştır. Örneklerin şeker içeriği analiz edildiğinde, domatesler olgunlaştıkça sakkaroz seviyeleri azalırken, fruktoz ve glukoz miktarı artmıştır. Muz örneklerinde ise olgunlaşma döneminde fruktoz ve glukoz miktarı artarken sakkaroz içeriğinin önce arttığı sonra azaldığı bildirilmiştir. Bu sonuçlar, meyve olgunlaşması sırasında nişastanın sakkaroza, sakkarozun da fruktoz ve glukoza dönüştüğünü göstermektedir. Ayrıca, uygulanan HPLC-ELSD yönteminin klimakterik meyvelerin şeker içeriği açısından analiz edilmesinde kolaylıkla uygulanabilir olduğu gösterilmiştir. Ayrıca, uygulanan HPLC-ELSD yönteminin yeşillik profili Analitik Eko Ölçek, NEMI, GAPI ve AGREE araçları kullanılarak değerlendirilmiştir.

Project Number

2207S079

References

  • Adão, R. C., & Glória, M. B. A. (2005). Bioactive amines and carbohydrate changes during ripening of “Prata” banana (Musa acuminata x M. balbisiana). Food Chemistry, 90(4), 705–711. https://doi.org/10.1016/J.FOODCHEM.2004.05.020
  • Adewale, I. O., Adefila, A., & Adewale, T. B. (2013). Changes in amylase activity, soluble sugars and proteins of unripe banana and plantain during ripening. Annual Review & Research in Biology, 34, 678-685.
  • Agius, C., von Tucher, S., Poppenberger, B., & Rozhon, W. (2018). Quantification of sugars and organic acids in tomato fruits. MethodsX, 5, 537–550. https://doi.org/10.1016/J.MEX.2018.05.014
  • Alferez, F., de Carvalho, D. U., & Boakye, D. (2021). Interplay between abscisic acid and gibberellins, as related to ethylene and sugars, in regulating maturation of non-climacteric fruit. International Journal of Molecular Sciences, 22(2), 669. https://doi.org/10.3390/ijms22020669
  • Chen, Y., Grimplet, J., David, K., Castellarin, S. D., Terol, J., Wong, D. C. J., Luo, Z., Schaffer, R., Celton, J. M., Talon, M., Gambetta, G. A., & Chervin, C. (2018). Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science, 276, 63–72. https://doi.org/10.1016/J.PLANTSCI.2018.07.012
  • Filip, M., Vlassa, M., Coman, V., & Halmagyi, A. (2016). Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chemistry, 199, 653–659. https://doi.org/10.1016/J.FOODCHEM.2015.12.060
  • Gałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37, 61-72. https://doi.org/10.1016/j.trac.2012.03.013
  • Gao, Y., Tian, P., Li, J., Cao, Y., Xu, W., & Li, J. (2019). Transcriptional changes during tomato ripening and influence of brackish water irrigation on fruit transcriptome and sugar content. Plant Physiology and Biochemistry, 145, 21–33. https://doi.org/10.1016/J.PLAPHY.2019.10.025
  • Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F., Poëssel, J. L., Caris-Veyrat, C., & Génard, M. (n.d.). How Does Tomato Quality (Sugar, Acid, and Nutritional Quality) Vary with Ripening Stage, Temperature, and Irradiance? Journal of Agricultural and Food Chemistry, 56(4), 1241-1250. https://doi.org/10.1021/jf072196t
  • Georgelis, N., Fencil, K., & Richael, C. M. (2018). Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues. Food Chemistry, 262, 191–198. https://doi.org/10.1016/J.FOODCHEM.2018.04.051
  • Grembecka, M., Lebiedzińska, A., & Szefer, P. (2014). Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchemical Journal, 117, 77–82. https://doi.org/10.1016/J.MICROC.2014.06.012
  • Hussain, C.M., Hussain, G., & Keçili, R. (2025b). Disposable analytical chemistry: Design, application & sustainability. TrAC - Trends in Analytical Chemistry. https://doi.org/10.1016/j.trac.2025.118414.
  • Ivancic, T., Jakopic, J., Veberic, R., Vesel, V., & Hudina, M. (2022). Effect of Ripening on the Phenolic and Sugar Contents in the Meso- and Epicarp of Olive Fruits (Olea europaea L.) Cultivar ‘Leccino.’ Agriculture (Switzerland), 12(9), 1347. https://doi.org/10.3390/AGRICULTURE12091347/S1
  • Jaglan, P., Buttar, H. S., Al-bawareed, O. A., & Chibisov, S. (2022). Potential health benefits of selected fruits: apples, blueberries, grapes, guavas, mangos, pomegranates, and tomatoes. Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 359–370. https://doi.org/10.1016/B978-0-12-819815-5.00026-4
  • Kaur, D., Sharma, R., Wani, A. A., Gill, S., & Sogi, D. S. (2006). Physicochemical Changes in Seven Tomato (Lycopersicon esculentum) Cultivars During Ripening. International Journal of Food Properties, 9(4), 747–757. https://doi.org/10.1080/10942910600575716
  • Keith, L. H., Gron, L. U., & Young, J. L. (2007). Green analytical methodologies. Chemical reviews, 107(6), 2695-2708. https://doi.org/10.1021/cr068359e
  • Kim, H. Y., Farcuh, M., Cohen, Y., Crisosto, C., Sadka, A., & Blumwald, E. (2015). Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Science, 231, 30–39. https://doi.org/10.1016/J.PLANTSCI.2014.11.002
  • Klee, H., genetics, J. G.-A. review of, & 2011, undefined. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Reviews, 45, 41–59. https://doi.org/10.1146/annurev-genet-110410-132507
  • Kou, X., Feng, Y., Yuan, S., Zhao, X., Wu, C., Wang, C., & Xue, Z. (2021). Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 1-21. https://doi.org/10.1007/s11103-021-01199-9
  • Kou, X., & Wu, M. (2018). Characterization of climacteric and non-climacteric fruit ripening. Methods in Molecular Biology, 1744, 89–102. https://doi.org/10.1007/978-1-4939-7672-0_7/COVER
  • Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal of Clinical Nutrition, 78 (3). https://doi.org/10.1093/AJCN/78.3.517S
  • Ma, C., Sun, Z., Chen, C., Zhang, L., & Zhu, S. (2014). Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chemistry, 145, 784–788. https://doi.org/10.1016/J.FOODCHEM.2013.08.135
  • Maduwanthi, S. D. T., & Marapana, R. A. U. J. (2017). Biochemical changes during ripening of banana: A review. International Journal of Food Science and Nutrition, Vol.2 (5), pp. 166-169. http://dr.lib.sjp.ac.lk/handle/123456789/7777
  • Mojsiewicz-Pieńkowska, K. (2009). On the issue of characteristic evaporative light scattering detector response. Critical Reviews in Analytical Chemistry, 39(2), 89–94. https://doi.org/10.1080/15389580802570218
  • Nogueira, L. C., Silva, F., Ferreira, I. M. P. L. V. O., & Trugo, L. C. (2005). Separation and quantification of beer carbohydrates by high-performance liquid chromatography with evaporative light scattering detection. Journal of Chromatography A, 1065(2), 207–210. https://doi.org/10.1016/J.CHROMA.2004.12.074
  • Payasi, A., Biochemistry, G. S.-J. of food, & 2010, undefined. (2010). Ripening of climacteric fruits and their control. Journal of food Biochemistry, 34(4), 679-710. https://doi.org/10.1111/j.1745-4514.2009.00307.x
  • Pena-Pereira, F., Wojnowski, W., & Tobiszewski, M. (2020). AGREE—Analytical GREEnness metric approach and software. Analytical chemistry, 92(14), 10076-10082. https://doi.org/10.1021/acs.analchem.0c01887
  • Płotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta, 181, 204-209. https://doi.org/10.1016/j.talanta.2018.01.013
  • Ruiz-jimé Nez, J., Priego-capote, F., & Dolores Luque De Castro, M. A. (2010). Qualitative and Quantitative Sugar Profiling in Olive Fruits, Leaves, and Stems by Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) after Ultrasound-Assisted Leaching. J. Agric. Food Chem, 58, 12292–12299. https://doi.org/10.1021/jf102350s
  • Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits - A review. Food Chemistry, 206, 1–11. https://doi.org/10.1016/J.FOODCHEM.2016.03.033
  • Sezgin, B., Arli, G., & Soyseven, M. (2025). Multi-metric greenness, performance and applicability evaluation of a green HPLC-ELSD method for polysorbate 80 determination in various pharmaceuticals compared with AI-assisted scoring systems. Microchemical Journal, 218. https://doi.org/10.1016/j.microc.2025.115710.
  • Soyseven, M., Sezgin, B., Acar, E., & Arli, G. (2023). Green, Rapid, Robust Determination of Aspartame in Beverages by High-Performance Liquid Chromatography-Evaporative Light Scattering Detection (HPLC-ELSD): Method Development and Validation. Analytical Letters, 56(11), 1773–1783. https://doi.org/10.1080/00032719.2022.2146129
  • Soyseven, M., Sezgin, B., & Arli, G. (2022). A novel, rapid and robust HPLC-ELSD method for simultaneous determination of fructose, glucose and sucrose in various food samples: Method development and validation. Journal of Food Composition and Analysis, 107. https://doi.org/10.1016/J.JFCA.2022.104400
  • Subedi, P. P., & Walsh, K. B. (2011). Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy. Postharvest Biology and Technology, 62(3), 238–245. https://doi.org/10.1016/J.POSTHARVBIO.2011.06.014
  • Tsai, Y. H., Tsai, C. W., & Tipple, C. A. (2022). A validated method for the analysis of sugars and sugar alcohols related to explosives via liquid chromatography mass spectrometry (LC-MS) with post-column addition. Forensic Chemistry, 28. https://doi.org/10.1016/J.FORC.2022.100404
  • Yumbya, P., Ambuko, J., Hutchinson, M., Owino, W., Juma, J., Machuka, E., & Mutuku, J. M. (2021). Transcriptome analysis to elucidate hexanal’s mode of action in preserving the post-harvest shelf life and quality of banana fruits (Musa acuminata). Journal of Agriculture and Food Research, 3. https://doi.org/10.1016/J.JAFR.2021.100114

Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method with Analytical Eco-scale, NEMI, GAPI and AGREE

Year 2025, Volume: 39 Issue: 3, 638 - 648, 27.12.2025
https://doi.org/10.15316/selcukjafsci.1676737

Abstract

The major sugar content in fruits is crucial in terms of diet. In this study, changes in fructose, glucose and sucrose amounts and total sugar content were investigated at different ripening stages (green, ripening, ripe and over-ripe) in tomatoes and bananas using an HPLC-ELSD method. Chromatographic separations were conducted using an HPLC column with a Phenomenex Luna NH2 stationary phase (5 μm particle size, 250 mm x 4.6 mm internal diameter, 100 Å), and eluted with a mobile phase consisting of acetonitrile:water (78:22, v/v). Quantitative results demonstrated a significant increase (p < 0.0001) in fructose and glucose contents of bananas from 0.87 g/100 g and 1.27 g/100 g at the green stage to 5.76 g/100 g and 11.13 g/100 g at the over-ripe stage, respectively, while sucrose peaked at 4.41 g/100 g during the ripening stage and declined thereafter. In tomatoes, fructose and glucose contents showed a moderate but statistically significant rise (p < 0.01) from 4.21 g/100 g and 6.48 g/100 g to 4.86 g/100 g and 6.55 g/100 g, whereas sucrose became undetectable after the ripening stage. Total sugar content increased by approximately sixfold in bananas and slightly in tomatoes throughout ripening. These results indicate that during fruit ripening, sucrose is converted into fructose and glucose. The applied HPLC-ELSD method has been shown to be easily applicable for analysing climacteric fruits for sugar content. In addition, the greenness profile of the applied HPLC-ELSD method was evaluated using AES, NEMI, GAPI, and AGREE tools, confirming that the method is environmentally acceptable and consistent with the principles of Green Analytical Chemistry.

Supporting Institution

Anadolu University

Project Number

2207S079

Thanks

The authors would like to extend their thanks to Yunus Emre Vocational School and the Health Services Research Laboratory at Anadolu University.

References

  • Adão, R. C., & Glória, M. B. A. (2005). Bioactive amines and carbohydrate changes during ripening of “Prata” banana (Musa acuminata x M. balbisiana). Food Chemistry, 90(4), 705–711. https://doi.org/10.1016/J.FOODCHEM.2004.05.020
  • Adewale, I. O., Adefila, A., & Adewale, T. B. (2013). Changes in amylase activity, soluble sugars and proteins of unripe banana and plantain during ripening. Annual Review & Research in Biology, 34, 678-685.
  • Agius, C., von Tucher, S., Poppenberger, B., & Rozhon, W. (2018). Quantification of sugars and organic acids in tomato fruits. MethodsX, 5, 537–550. https://doi.org/10.1016/J.MEX.2018.05.014
  • Alferez, F., de Carvalho, D. U., & Boakye, D. (2021). Interplay between abscisic acid and gibberellins, as related to ethylene and sugars, in regulating maturation of non-climacteric fruit. International Journal of Molecular Sciences, 22(2), 669. https://doi.org/10.3390/ijms22020669
  • Chen, Y., Grimplet, J., David, K., Castellarin, S. D., Terol, J., Wong, D. C. J., Luo, Z., Schaffer, R., Celton, J. M., Talon, M., Gambetta, G. A., & Chervin, C. (2018). Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science, 276, 63–72. https://doi.org/10.1016/J.PLANTSCI.2018.07.012
  • Filip, M., Vlassa, M., Coman, V., & Halmagyi, A. (2016). Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chemistry, 199, 653–659. https://doi.org/10.1016/J.FOODCHEM.2015.12.060
  • Gałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37, 61-72. https://doi.org/10.1016/j.trac.2012.03.013
  • Gao, Y., Tian, P., Li, J., Cao, Y., Xu, W., & Li, J. (2019). Transcriptional changes during tomato ripening and influence of brackish water irrigation on fruit transcriptome and sugar content. Plant Physiology and Biochemistry, 145, 21–33. https://doi.org/10.1016/J.PLAPHY.2019.10.025
  • Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F., Poëssel, J. L., Caris-Veyrat, C., & Génard, M. (n.d.). How Does Tomato Quality (Sugar, Acid, and Nutritional Quality) Vary with Ripening Stage, Temperature, and Irradiance? Journal of Agricultural and Food Chemistry, 56(4), 1241-1250. https://doi.org/10.1021/jf072196t
  • Georgelis, N., Fencil, K., & Richael, C. M. (2018). Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues. Food Chemistry, 262, 191–198. https://doi.org/10.1016/J.FOODCHEM.2018.04.051
  • Grembecka, M., Lebiedzińska, A., & Szefer, P. (2014). Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchemical Journal, 117, 77–82. https://doi.org/10.1016/J.MICROC.2014.06.012
  • Hussain, C.M., Hussain, G., & Keçili, R. (2025b). Disposable analytical chemistry: Design, application & sustainability. TrAC - Trends in Analytical Chemistry. https://doi.org/10.1016/j.trac.2025.118414.
  • Ivancic, T., Jakopic, J., Veberic, R., Vesel, V., & Hudina, M. (2022). Effect of Ripening on the Phenolic and Sugar Contents in the Meso- and Epicarp of Olive Fruits (Olea europaea L.) Cultivar ‘Leccino.’ Agriculture (Switzerland), 12(9), 1347. https://doi.org/10.3390/AGRICULTURE12091347/S1
  • Jaglan, P., Buttar, H. S., Al-bawareed, O. A., & Chibisov, S. (2022). Potential health benefits of selected fruits: apples, blueberries, grapes, guavas, mangos, pomegranates, and tomatoes. Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 359–370. https://doi.org/10.1016/B978-0-12-819815-5.00026-4
  • Kaur, D., Sharma, R., Wani, A. A., Gill, S., & Sogi, D. S. (2006). Physicochemical Changes in Seven Tomato (Lycopersicon esculentum) Cultivars During Ripening. International Journal of Food Properties, 9(4), 747–757. https://doi.org/10.1080/10942910600575716
  • Keith, L. H., Gron, L. U., & Young, J. L. (2007). Green analytical methodologies. Chemical reviews, 107(6), 2695-2708. https://doi.org/10.1021/cr068359e
  • Kim, H. Y., Farcuh, M., Cohen, Y., Crisosto, C., Sadka, A., & Blumwald, E. (2015). Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Science, 231, 30–39. https://doi.org/10.1016/J.PLANTSCI.2014.11.002
  • Klee, H., genetics, J. G.-A. review of, & 2011, undefined. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Reviews, 45, 41–59. https://doi.org/10.1146/annurev-genet-110410-132507
  • Kou, X., Feng, Y., Yuan, S., Zhao, X., Wu, C., Wang, C., & Xue, Z. (2021). Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 1-21. https://doi.org/10.1007/s11103-021-01199-9
  • Kou, X., & Wu, M. (2018). Characterization of climacteric and non-climacteric fruit ripening. Methods in Molecular Biology, 1744, 89–102. https://doi.org/10.1007/978-1-4939-7672-0_7/COVER
  • Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal of Clinical Nutrition, 78 (3). https://doi.org/10.1093/AJCN/78.3.517S
  • Ma, C., Sun, Z., Chen, C., Zhang, L., & Zhu, S. (2014). Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chemistry, 145, 784–788. https://doi.org/10.1016/J.FOODCHEM.2013.08.135
  • Maduwanthi, S. D. T., & Marapana, R. A. U. J. (2017). Biochemical changes during ripening of banana: A review. International Journal of Food Science and Nutrition, Vol.2 (5), pp. 166-169. http://dr.lib.sjp.ac.lk/handle/123456789/7777
  • Mojsiewicz-Pieńkowska, K. (2009). On the issue of characteristic evaporative light scattering detector response. Critical Reviews in Analytical Chemistry, 39(2), 89–94. https://doi.org/10.1080/15389580802570218
  • Nogueira, L. C., Silva, F., Ferreira, I. M. P. L. V. O., & Trugo, L. C. (2005). Separation and quantification of beer carbohydrates by high-performance liquid chromatography with evaporative light scattering detection. Journal of Chromatography A, 1065(2), 207–210. https://doi.org/10.1016/J.CHROMA.2004.12.074
  • Payasi, A., Biochemistry, G. S.-J. of food, & 2010, undefined. (2010). Ripening of climacteric fruits and their control. Journal of food Biochemistry, 34(4), 679-710. https://doi.org/10.1111/j.1745-4514.2009.00307.x
  • Pena-Pereira, F., Wojnowski, W., & Tobiszewski, M. (2020). AGREE—Analytical GREEnness metric approach and software. Analytical chemistry, 92(14), 10076-10082. https://doi.org/10.1021/acs.analchem.0c01887
  • Płotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta, 181, 204-209. https://doi.org/10.1016/j.talanta.2018.01.013
  • Ruiz-jimé Nez, J., Priego-capote, F., & Dolores Luque De Castro, M. A. (2010). Qualitative and Quantitative Sugar Profiling in Olive Fruits, Leaves, and Stems by Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) after Ultrasound-Assisted Leaching. J. Agric. Food Chem, 58, 12292–12299. https://doi.org/10.1021/jf102350s
  • Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits - A review. Food Chemistry, 206, 1–11. https://doi.org/10.1016/J.FOODCHEM.2016.03.033
  • Sezgin, B., Arli, G., & Soyseven, M. (2025). Multi-metric greenness, performance and applicability evaluation of a green HPLC-ELSD method for polysorbate 80 determination in various pharmaceuticals compared with AI-assisted scoring systems. Microchemical Journal, 218. https://doi.org/10.1016/j.microc.2025.115710.
  • Soyseven, M., Sezgin, B., Acar, E., & Arli, G. (2023). Green, Rapid, Robust Determination of Aspartame in Beverages by High-Performance Liquid Chromatography-Evaporative Light Scattering Detection (HPLC-ELSD): Method Development and Validation. Analytical Letters, 56(11), 1773–1783. https://doi.org/10.1080/00032719.2022.2146129
  • Soyseven, M., Sezgin, B., & Arli, G. (2022). A novel, rapid and robust HPLC-ELSD method for simultaneous determination of fructose, glucose and sucrose in various food samples: Method development and validation. Journal of Food Composition and Analysis, 107. https://doi.org/10.1016/J.JFCA.2022.104400
  • Subedi, P. P., & Walsh, K. B. (2011). Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy. Postharvest Biology and Technology, 62(3), 238–245. https://doi.org/10.1016/J.POSTHARVBIO.2011.06.014
  • Tsai, Y. H., Tsai, C. W., & Tipple, C. A. (2022). A validated method for the analysis of sugars and sugar alcohols related to explosives via liquid chromatography mass spectrometry (LC-MS) with post-column addition. Forensic Chemistry, 28. https://doi.org/10.1016/J.FORC.2022.100404
  • Yumbya, P., Ambuko, J., Hutchinson, M., Owino, W., Juma, J., Machuka, E., & Mutuku, J. M. (2021). Transcriptome analysis to elucidate hexanal’s mode of action in preserving the post-harvest shelf life and quality of banana fruits (Musa acuminata). Journal of Agriculture and Food Research, 3. https://doi.org/10.1016/J.JAFR.2021.100114
There are 36 citations in total.

Details

Primary Language English
Subjects Food Chemistry and Food Sensory Science
Journal Section Research Article
Authors

Burcu Sezgin 0000-0003-0279-4839

Murat Soyseven 0000-0002-6433-2392

Göksel Arli 0000-0003-2559-1196

Project Number 2207S079
Submission Date April 15, 2025
Acceptance Date November 20, 2025
Publication Date December 27, 2025
Published in Issue Year 2025 Volume: 39 Issue: 3

Cite

APA Sezgin, B., Soyseven, M., & Arli, G. (2025). Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method with Analytical Eco-scale, NEMI, GAPI and AGREE. Selcuk Journal of Agriculture and Food Sciences, 39(3), 638-648. https://doi.org/10.15316/selcukjafsci.1676737
AMA Sezgin B, Soyseven M, Arli G. Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method with Analytical Eco-scale, NEMI, GAPI and AGREE. Selcuk J Agr Food Sci. December 2025;39(3):638-648. doi:10.15316/selcukjafsci.1676737
Chicago Sezgin, Burcu, Murat Soyseven, and Göksel Arli. “Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method With Analytical Eco-Scale, NEMI, GAPI and AGREE”. Selcuk Journal of Agriculture and Food Sciences 39, no. 3 (December 2025): 638-48. https://doi.org/10.15316/selcukjafsci.1676737.
EndNote Sezgin B, Soyseven M, Arli G (December 1, 2025) Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method with Analytical Eco-scale, NEMI, GAPI and AGREE. Selcuk Journal of Agriculture and Food Sciences 39 3 638–648.
IEEE B. Sezgin, M. Soyseven, and G. Arli, “Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method with Analytical Eco-scale, NEMI, GAPI and AGREE”, Selcuk J Agr Food Sci, vol. 39, no. 3, pp. 638–648, 2025, doi: 10.15316/selcukjafsci.1676737.
ISNAD Sezgin, Burcu et al. “Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method With Analytical Eco-Scale, NEMI, GAPI and AGREE”. Selcuk Journal of Agriculture and Food Sciences 39/3 (December2025), 638-648. https://doi.org/10.15316/selcukjafsci.1676737.
JAMA Sezgin B, Soyseven M, Arli G. Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method with Analytical Eco-scale, NEMI, GAPI and AGREE. Selcuk J Agr Food Sci. 2025;39:638–648.
MLA Sezgin, Burcu et al. “Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method With Analytical Eco-Scale, NEMI, GAPI and AGREE”. Selcuk Journal of Agriculture and Food Sciences, vol. 39, no. 3, 2025, pp. 638-4, doi:10.15316/selcukjafsci.1676737.
Vancouver Sezgin B, Soyseven M, Arli G. Determination of Sugar Contents of Various Postharvest Climacteric Fruits Using HPLC-ELSD; Evaluation at Different Ripening Stages and Assessment of the Greenness Profile of the Method with Analytical Eco-scale, NEMI, GAPI and AGREE. Selcuk J Agr Food Sci. 2025;39(3):638-4.

Selcuk Agricultural and Food Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).