Research Article
BibTex RIS Cite
Year 2018, Volume: 36 Issue: 1, 191 - 206, 01.03.2018

Abstract

References

  • [1] Ugural A.C. (1981), Stresses in Plates and Shells, McGraw-Hill., New York.
  • [2] Leissa A. W. The free vibration of rectangular plates. J Sound Vib 1973; 31 (3): 257-294.
  • [3] Leissa A.W. Recent research in plate vibrations, 1973–1976: classical theory. The Shock and Vibration, Digest 1977; 9 (10): 13–24.
  • [4] Leissa A.W. Recent research in plate vibrations, 1973–1976: complicatingeffects. The Shock and Vibration, Digest 1977; 9 (11): 21–35.
  • [5] Leissa A.W. Plate vibration research, 1976–1980: classical theory. The Shock and Vibration Digest 1981; 13 (9): 11–22.
  • [6] Leissa A.W. Plate vibration research, 1976–1980: complicatingeffects. The Shock and Vibration Digest 1981; 13 (10): 19–36.
  • [7] Leissa A.W. Plate vibration research,1981–1985—part I: classical theory. The Shock and Vibration Digest 1987; 19 (2): 11–18.
  • [8] Leissa A.W. Plate vibration research, 1981–1985—part II: complicatingeffects. The Shock and Vibration Digest 1987; 19 (3): 10–24.
  • [9] Providakis C. P., Beskos D. E. Free and forced vibrations of plates by boundary elements. Comput Meth Appl Mech Eng 1989;, 74: 231- 250.
  • [10] Providakis C. P., Beskos D. E. Free and forced vibrations of plates by boundary and interior elements. Int J Numer Meth Eng 1989; 28: 1977-1994.
  • [11] Warburton G. B. The vibration of rectangular plates. Proceeding of the İnstitude of Mechanical Engineers 1954; 168: 371-384.
  • [12] Caldersmith G. W. Vibrations of orthotropic rectangular plates. ACUSTICA 1984; 56: 144-152.
  • [13] Grice R. M., Pinnington R. J. Analysis of the flexural vibration of a thin-plate box using a combination of finite element analysis and analytical impedances. J Sound Vib 2002; 249(3): 499-527.
  • [14] Sakata T., Hosokawa K. Vibrations of clamped orthotropic rectangular plates. J Sound Vib 1988; 125 (3): 429-439.
  • [15] Lok T. S., Cheng Q. H. Free and forced vibration of simply supported, orthotropic sandwich panel. Comput. Struct 2001; 79(3): 301- 312.
  • [16] Si W.J., Lam K. Y., Gang S. W. Vibration analysis of rectangular plates with one or more guided edges via bicubic B-spline method. Shock Vib 2005; 12(5).
  • [17] Ayvaz Y., Durmuş A. Earhquake analysis of simply supported reinforced concrete slabs. J Sound Vib 1995; 187(3): 531-539.
  • [18] Reissner E. The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. J Appl Mech (ASME) 1945; 12: A69-A77.
  • [19] Reissner E. On Bending of Elastic Plates. Quarterly Appl Math 1947; 5(1): 55-68.
  • [20] Reissner,E. On a Variational Theorem in Elasticity. J Math Physics 1950; 29: 90-95.
  • [21] Mindlin RD. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 1951; 18(1): 31-38.
  • [22] Hinton E., Huang HC. A family of quadrilateral Mindlin plate element with substitute shear strain fields. Comput Struct 1986; 23(3): 409-431.
  • [23] Zienkiewich OC. Taylor RL., Too JM., “Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng 1971; 3: 275-290.
  • [24] Bergan PG., Wang X. Quadrilateral Plate Bending Elements with Shear Deformations. Comput Struct 1984; 19(1-2): 25-34.
  • [25] Özkul T. A., Ture U. The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem. Thin-Walled Struct 2004; 42: 1405-1430.
  • [26] Hughes T. J. R., Taylor R. L., Kalcjai W. Simple and efficient element for plate bending. Int J Numer Meth Eng 1977; 11: 1529-1543.
  • [27] Özdemir Y. I., Bekiroğlu S., Ayvaz Y. Shear locking-free analysis of thick plates using Mindlin’s theory. Struct Eng Mech 2007; 27(3): 311-331.
  • [28] Özdemir Y. I. Development of a higher order finite element on a Winkler foundation. Finite Elem Anal Des 2012; 48: 1400-1408.
  • [29] Wanji C., Cheung Y. K. Refined quadrilateral element based on Mindlin/Reissner plate theory. Int J Numer Meth Eng 2000; 47: 605- 627.
  • [30] Soh A. K., Cen S., Long Y., Long Z. A new twelve DOF quadrilateral element for analysis of thick and thin plates. Eur J Mech ; A/Solids 2001; 20: 299-326.
  • [31] Brezzi F., Marini L. D. A nonconforming element for the Reissner-Mindlin plate. Comput Struct 2003; 81: 515-522.
  • [32] Belounar L., Guenfound M. A new rectangular finite element based on the strain approach for plate bending. Thin-Wall Struct 2005; 43: 47-63.
  • [33] Senjanovic I., Tomic M., Hadzic N., Vladimir N. Dynamic finite element formulations for moderately thick plate vibrations based on the modified Mindlin theory. Eng. Struct. 2017; 136:100-113.
  • [34] Cen S., Long Y.Q., Yao Z.H., Chiew S.P. Application of the quadrilateral area co-ordinate method: Anew element for Mindlin- Reissner plate. Int J Numer Meth Eng 2006; 66: 1-45.
  • [35] Shen H. S., Yang J., Zhang L. Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundation. J Sound Vib 2001; 244(2): 299-320.
  • [36] Woo K.S., Hong C.H., Basu P.K. and Seo C.G. Free vibration of skew Mindlin plates by p-version of F.E.M. J Sound Vib 2003; 268: 637- 656.
  • [37] Qian, R.C. Batra, L.M. Chen. Free and forced vibration of thick rectangular plates using higher-orde shear and normal deformable plate theory and meshless Petrov-Galerkin (MLPG) method. Comput Modeling Eng & Sciences 2003; 4(5): 519-534.
  • [38] Özdemir Y. I., Ayvaz Y. Shear locking-free earthquake analysis of thick and thin plates using Mindlin’s theory. Struct Eng Mech 2009; 33(3): 373-385.
  • [39] Gunagpeng Z., Tianxia Z., Yaohui S. Free vibration analysis of plates on Winkler elastic foundation by boundary element method. Opt Elect Materials Applicat II 2012; 529: 246-251.
  • [40] Fallah A., Aghdam M. M. and Kargarnovin M.H. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method. Arch Appl Mech 2013; 83(2): 177-191.
  • [41] Jahromi H. N., Aghdam M. M., Fallah A. Free vibration analysis of Mindlin plates partially resting on Pasternak foundation. Int J Mech Sciences 2013;75: 1-7.
  • [42] Özgan K., Daloglu A. T. Free vibration analysis of thick plates on elastic foundations using modified Vlasov model with higher order finite elements. Int J Eng Materials Sciences 2012; 19: 279-291.
  • [43] Özgan K., Daloglu A. T. Free vibration analysis of thick plates resting on Winkler elastic foundation. Challenge J Struct Mech 2015; 1(2): 78-83.
  • [44] Cook R.D., Malkus D. S., Michael E. P. Concepts and Applications of Finite Element Analysis. John Wiley & Sons, Inc., Canada; 1989.
  • [45] Bathe KJ. Finite ElementProcedures. Prentice Hall, Upper Saddle River, New Jersey; 1996.
  • [46] Tedesco J. W., McDougal W. G., Ross C.A. Structural Dynamics. Addison Wesley Longman Inc., California; 1999.
  • [47] Weaver W., Johnston PR. Finite Elements for Structural Analysis. Prentice Hall, Inc., Englewood Cliffs, New Jersey; 1984.

PARAMETRIC EIGENVALUE ANALYSIS OF MINDLIN PLATES RESTING ON WINKLER FOUNDATION WITH SECOND ORDER FINITE ELEMENT

Year 2018, Volume: 36 Issue: 1, 191 - 206, 01.03.2018

Abstract

The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin’s theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using second order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 8-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 8-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio

References

  • [1] Ugural A.C. (1981), Stresses in Plates and Shells, McGraw-Hill., New York.
  • [2] Leissa A. W. The free vibration of rectangular plates. J Sound Vib 1973; 31 (3): 257-294.
  • [3] Leissa A.W. Recent research in plate vibrations, 1973–1976: classical theory. The Shock and Vibration, Digest 1977; 9 (10): 13–24.
  • [4] Leissa A.W. Recent research in plate vibrations, 1973–1976: complicatingeffects. The Shock and Vibration, Digest 1977; 9 (11): 21–35.
  • [5] Leissa A.W. Plate vibration research, 1976–1980: classical theory. The Shock and Vibration Digest 1981; 13 (9): 11–22.
  • [6] Leissa A.W. Plate vibration research, 1976–1980: complicatingeffects. The Shock and Vibration Digest 1981; 13 (10): 19–36.
  • [7] Leissa A.W. Plate vibration research,1981–1985—part I: classical theory. The Shock and Vibration Digest 1987; 19 (2): 11–18.
  • [8] Leissa A.W. Plate vibration research, 1981–1985—part II: complicatingeffects. The Shock and Vibration Digest 1987; 19 (3): 10–24.
  • [9] Providakis C. P., Beskos D. E. Free and forced vibrations of plates by boundary elements. Comput Meth Appl Mech Eng 1989;, 74: 231- 250.
  • [10] Providakis C. P., Beskos D. E. Free and forced vibrations of plates by boundary and interior elements. Int J Numer Meth Eng 1989; 28: 1977-1994.
  • [11] Warburton G. B. The vibration of rectangular plates. Proceeding of the İnstitude of Mechanical Engineers 1954; 168: 371-384.
  • [12] Caldersmith G. W. Vibrations of orthotropic rectangular plates. ACUSTICA 1984; 56: 144-152.
  • [13] Grice R. M., Pinnington R. J. Analysis of the flexural vibration of a thin-plate box using a combination of finite element analysis and analytical impedances. J Sound Vib 2002; 249(3): 499-527.
  • [14] Sakata T., Hosokawa K. Vibrations of clamped orthotropic rectangular plates. J Sound Vib 1988; 125 (3): 429-439.
  • [15] Lok T. S., Cheng Q. H. Free and forced vibration of simply supported, orthotropic sandwich panel. Comput. Struct 2001; 79(3): 301- 312.
  • [16] Si W.J., Lam K. Y., Gang S. W. Vibration analysis of rectangular plates with one or more guided edges via bicubic B-spline method. Shock Vib 2005; 12(5).
  • [17] Ayvaz Y., Durmuş A. Earhquake analysis of simply supported reinforced concrete slabs. J Sound Vib 1995; 187(3): 531-539.
  • [18] Reissner E. The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. J Appl Mech (ASME) 1945; 12: A69-A77.
  • [19] Reissner E. On Bending of Elastic Plates. Quarterly Appl Math 1947; 5(1): 55-68.
  • [20] Reissner,E. On a Variational Theorem in Elasticity. J Math Physics 1950; 29: 90-95.
  • [21] Mindlin RD. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 1951; 18(1): 31-38.
  • [22] Hinton E., Huang HC. A family of quadrilateral Mindlin plate element with substitute shear strain fields. Comput Struct 1986; 23(3): 409-431.
  • [23] Zienkiewich OC. Taylor RL., Too JM., “Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng 1971; 3: 275-290.
  • [24] Bergan PG., Wang X. Quadrilateral Plate Bending Elements with Shear Deformations. Comput Struct 1984; 19(1-2): 25-34.
  • [25] Özkul T. A., Ture U. The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem. Thin-Walled Struct 2004; 42: 1405-1430.
  • [26] Hughes T. J. R., Taylor R. L., Kalcjai W. Simple and efficient element for plate bending. Int J Numer Meth Eng 1977; 11: 1529-1543.
  • [27] Özdemir Y. I., Bekiroğlu S., Ayvaz Y. Shear locking-free analysis of thick plates using Mindlin’s theory. Struct Eng Mech 2007; 27(3): 311-331.
  • [28] Özdemir Y. I. Development of a higher order finite element on a Winkler foundation. Finite Elem Anal Des 2012; 48: 1400-1408.
  • [29] Wanji C., Cheung Y. K. Refined quadrilateral element based on Mindlin/Reissner plate theory. Int J Numer Meth Eng 2000; 47: 605- 627.
  • [30] Soh A. K., Cen S., Long Y., Long Z. A new twelve DOF quadrilateral element for analysis of thick and thin plates. Eur J Mech ; A/Solids 2001; 20: 299-326.
  • [31] Brezzi F., Marini L. D. A nonconforming element for the Reissner-Mindlin plate. Comput Struct 2003; 81: 515-522.
  • [32] Belounar L., Guenfound M. A new rectangular finite element based on the strain approach for plate bending. Thin-Wall Struct 2005; 43: 47-63.
  • [33] Senjanovic I., Tomic M., Hadzic N., Vladimir N. Dynamic finite element formulations for moderately thick plate vibrations based on the modified Mindlin theory. Eng. Struct. 2017; 136:100-113.
  • [34] Cen S., Long Y.Q., Yao Z.H., Chiew S.P. Application of the quadrilateral area co-ordinate method: Anew element for Mindlin- Reissner plate. Int J Numer Meth Eng 2006; 66: 1-45.
  • [35] Shen H. S., Yang J., Zhang L. Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundation. J Sound Vib 2001; 244(2): 299-320.
  • [36] Woo K.S., Hong C.H., Basu P.K. and Seo C.G. Free vibration of skew Mindlin plates by p-version of F.E.M. J Sound Vib 2003; 268: 637- 656.
  • [37] Qian, R.C. Batra, L.M. Chen. Free and forced vibration of thick rectangular plates using higher-orde shear and normal deformable plate theory and meshless Petrov-Galerkin (MLPG) method. Comput Modeling Eng & Sciences 2003; 4(5): 519-534.
  • [38] Özdemir Y. I., Ayvaz Y. Shear locking-free earthquake analysis of thick and thin plates using Mindlin’s theory. Struct Eng Mech 2009; 33(3): 373-385.
  • [39] Gunagpeng Z., Tianxia Z., Yaohui S. Free vibration analysis of plates on Winkler elastic foundation by boundary element method. Opt Elect Materials Applicat II 2012; 529: 246-251.
  • [40] Fallah A., Aghdam M. M. and Kargarnovin M.H. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method. Arch Appl Mech 2013; 83(2): 177-191.
  • [41] Jahromi H. N., Aghdam M. M., Fallah A. Free vibration analysis of Mindlin plates partially resting on Pasternak foundation. Int J Mech Sciences 2013;75: 1-7.
  • [42] Özgan K., Daloglu A. T. Free vibration analysis of thick plates on elastic foundations using modified Vlasov model with higher order finite elements. Int J Eng Materials Sciences 2012; 19: 279-291.
  • [43] Özgan K., Daloglu A. T. Free vibration analysis of thick plates resting on Winkler elastic foundation. Challenge J Struct Mech 2015; 1(2): 78-83.
  • [44] Cook R.D., Malkus D. S., Michael E. P. Concepts and Applications of Finite Element Analysis. John Wiley & Sons, Inc., Canada; 1989.
  • [45] Bathe KJ. Finite ElementProcedures. Prentice Hall, Upper Saddle River, New Jersey; 1996.
  • [46] Tedesco J. W., McDougal W. G., Ross C.A. Structural Dynamics. Addison Wesley Longman Inc., California; 1999.
  • [47] Weaver W., Johnston PR. Finite Elements for Structural Analysis. Prentice Hall, Inc., Englewood Cliffs, New Jersey; 1984.
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Yaprak Itır Özdemir This is me 0000-0002-0658-1366

Publication Date March 1, 2018
Submission Date December 15, 2017
Published in Issue Year 2018 Volume: 36 Issue: 1

Cite

Vancouver Özdemir YI. PARAMETRIC EIGENVALUE ANALYSIS OF MINDLIN PLATES RESTING ON WINKLER FOUNDATION WITH SECOND ORDER FINITE ELEMENT. SIGMA. 2018;36(1):191-206.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/