Research Article
BibTex RIS Cite

DERIVATIVES WITH RESPECT TO COMPLETE AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC ON COTANGENT BUNDLE

Year 2018, Volume: 36 Issue: 2, 361 - 372, 01.06.2018

Abstract

In this paper, we define the Cheeger-Gromoll metric in the cotangent bundle , which is completely determined by its actionon complete lifts of vector fields. Later, we obtain the covariant and Lie derivatives applied to Cheeger-Gromoll metrics with respect to the complete and vertical lifts of vector and kovector fields, respectively.

References

  • [1] F. Ağca, A.A. Salimov, Some notes concerning Cheenger-Gromoll metrics. Hacet. J. Math. Stat., 42 (2013), no.5, 533-549.
  • [2] J. Cheege, D. Gromoll, On the structure of complete manifolds of nonnegative curvature. Ann. of Math. 96 (1972), 413-443.
  • [3] H. Çayır, Lie derivatives of almost contact structure and almost paracontact structure with respect to and on tangent bundle Proceedings of the Institute of Mathematics and Mechanics. 42 (2016), no.1, 38-49.
  • [4] H. Çayır, Tachibana and Vishnevskii Operators Applied to and in Almost Paracontact Structure on Tangent Bundle Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 6 (2016), no.1, 67-82.
  • [5] H. Çayır, Tachibana and Vishnevskii Operators Applied to and in Almost Paracontact Structure on Tangent Bundle New Trends in Mathematical Sciences, 4 (2016), no.3, 105-115.
  • [6] H. Çayır, G. Köseoğlu, Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to and on Tangent Bundle New Trends in Mathematical Sciences, 4 (2016), no.1, 153-159.
  • [7] H. Çayır, K. Akdağ, Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle. New Trends in Mathematical Sciences. 4 (2016), no.4, 42-50.
  • [8] A. Gezer, M. Altunbas, Some notes concerning Riemannian metrics of Cheeger Gromoll type.- J. Math. Anal. Appl. 396 (2012), 119-132.
  • [9] S. Gudmundsson, E. Kappos, On the geometry of the tangent bunles with the Chegeer-Gromoll metric.- Tokyo J. Math. 25 (2002), no.1, 75-83.
  • [10] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry-Volume I. John Wiley & Sons, Inc, New York, 1963.
  • [11] M. I. Muntenau, Chegeer Gromoll type metrics on the tangent bundle.- Sci. Ann. Univ. Agric. Sci. Vet. Med., 49 (2006), No.2, 257-268.
  • [12] E. Musso and F. Tricerri, Riemannian metric on tangent bundles.- Ann. Math. Pura. Appl. 150 (1988), no.4, 1-19.
  • [13] F. Ocak, Para-Nordenian Structures on the Cotangent Bundle with Respect to the Cheeger-Gromoll Metric.- Proceedings of the Institute of Mathematics and Mechanics, 41 (2015), no.2, 63-69.
  • [14] A. A. Salimov,Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
  • [15] A. A. Salimov, A. Gezer and M. Iscan, On para-Kahler-Norden structures on the tangent bundles.- Ann. Polon. Math., 103 (2012), no.3, 247-261.
  • [16] A. A. Salimov, S. Kazimova, Geodesics of the Cheeger-Gromoll metric.- Turk. J. Math., 32 (2008).
  • [17] M. Sekizawa, Curvatures of tangent bundles with Cheeger-Gromoll metric.- Tokyo J. Math., 14 (1991), 407-417.
  • [18] I. E. Tamn, Sobrainie nauchnyh trudov (Collection of scientific works), II, (Russian) Nauka, Moscow, 1975. 448 pp.
  • [19] K. Yano, S .Ishihara, Tangent and Cotangent Bundles Differential geometry. Pure and Applied Mathematics. Mercel Dekker, Inc, New York, 1973.
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Haşim Çayır This is me 0000-0003-0348-8665

Publication Date June 1, 2018
Submission Date April 17, 2017
Published in Issue Year 2018 Volume: 36 Issue: 2

Cite

Vancouver Çayır H. DERIVATIVES WITH RESPECT TO COMPLETE AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC ON COTANGENT BUNDLE. SIGMA. 2018;36(2):361-72.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/