Research Article
BibTex RIS Cite

SOME PROPERTIES OF PESSIMISTIC AND OPTIMISTIC VALUES FOR UNCERTAIN RANDOM VARIABLES

Year 2018, Volume: 36 Issue: 2, 465 - 472, 01.06.2018

Abstract

The optimistic and pessimistic values of uncertain random variable have been presented for handling both uncertainty and randomness. In this paper, some extensions of optimistic and pessimistic values of uncertain random variable are investigated.As a sample, the optimistic and pessimistic values of an uncertain random variable are expressed.

References

  • ⦁ B. Liu, Uncertainty Theory, 2nd ed., Springer-Verlag, Berlin, Germany, 2007.
  • ⦁ B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, Germany, 2010.
  • ⦁ Y. H. Liu, Uncertain random variables: A mixture of uncertainty and randomness,Soft Comput. 17 (2013) 625-634.
  • ⦁ Y. H. Liu, Uncertain random programming with applications, Fuzzy Optim. Decis. Ma. 12 (2013) 153-169.
  • ⦁ Y.H. Liu, D.A. Ralescu, Value-at-risk in uncertain random risk analysis, Information Sciences 391 (2017) 1-8.
  • ⦁ B. Liu, Uncertain random graph and uncertain random network, J. Uncertain Syst. 8 (2014) 3-12.
  • ⦁ J. Zhou, F. Yang, K. Wang, Multi-objective optimization in uncertain random environments, Fuzzy Optim. Decis. Ma. 13 (2014) 397-413.
  • ⦁ J.W. Gao, K. Yao, Some concepts and theorems of uncertain random process, Int. J. Intell. Syst. 30 (1) (2015) 52–65.
  • ⦁ K. Yao, J.W. Gao, Uncertain random alternating renewal process with application to interval availability, IEEE Trans. Fuzzy Syst. 23 (5) (2015) 1333–1342.
  • ⦁ H. Ke, H. Liu, G. G. Tian, An uncertain random programming model for project scheduling problem, Int. J. Intell. Syst.30 (2015) 66-79.
  • ⦁ H. Ahmadzade, R. Gao, H. Zarei, Partial quadratic entropy of uncertain random variables, J. Uncertain Syst. 10 (2016) 292-301.
  • ⦁ H. Dalman Uncertain random programming models for fixed charge multi-item solid transportation problem, New Trends in Mathematical Sciences, Volume: 6(1), (2018) 37-51.
  • ⦁ Y. H. Sheng, Y. Gao, Shortest path problem of uncertain random network, Comput. Ind. Eng. 99 (2016) 97-105.
  • ⦁ B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst. 3 (2009) 3-10.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hasan Dalman This is me 0000-0001-8925-3941

Publication Date June 1, 2018
Submission Date February 26, 2018
Published in Issue Year 2018 Volume: 36 Issue: 2

Cite

Vancouver Dalman H. SOME PROPERTIES OF PESSIMISTIC AND OPTIMISTIC VALUES FOR UNCERTAIN RANDOM VARIABLES. SIGMA. 2018;36(2):465-72.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/