Year 2024,
Volume: 42 Issue: 1, 37 - 41, 27.02.2024
Süleyman Şenyurt
,
Kemal Eren
,
Kebire Hilal Ayvacı
References
- REFERENCES
- [1] Tzitzeica G. Sur Certaines Courbes Gouches. Ann De I’Ec Normale Sup. 1911;28:9–32. [CrossRef]
- [2] Agnew AF, Bobe A, Boskoff WG, Suceava BD. Tzitzeica curves and surfaces. Math J 2010;12:1–18. [CrossRef]
- [3] Karacan MK, Bükçü B. On the elliptic cylindrical Tzitzeica curves in Minkowski 3-space. Sci Manga 2009:44–48.
- [4] Crasmareanu M. Cylindrical Tzitzeica curves implies forced harmonic oscillators. Balkan J Geom Appl 2002;7:37–42.
- [5] Constantinescu O, Crasmareanu M. A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwald type. Balkan J Geom Appl 2011;16:27–34.
- [6] Bobe A, Boskoff WG, Ciuca MG. Tzitzeica-Type centro-affine invariants in Minkowski spaces. An St Univ Ovidius Constanta 2012;20:27–34. [CrossRef]
- [7] Bila N. Symmetry reductions for the Tzitzeica curve equation. Math and Comp Sci 2012;16.
- [8] Bayram B, Tunç E, Arslan K, Öztürk G. On Tzitzeica curves in Euclidean 3-space. Facta Univ Ser Math Inform 2018;33:409–416. [CrossRef]
- [9] Özen KE, Tosun M. Characterization of Tzitzeica curves using positional adapted frame. 2022;10:260268.
- [10] Eren K, Ersoy S. Characterizations of Tzitzeica curves using Bishop frames. Math Meth Appl Sci 2021;1–14. [CrossRef]
- [11] O'Neill B. Elementary Differential Geometry. New York: Academic Press Inc.; 1966. [CrossRef]
- [12] Dede M. A new representation of tubular surfaces. Houston J Math 2019;45:707–720.
Characterizations of tzitzeica curves using FLC frame
Year 2024,
Volume: 42 Issue: 1, 37 - 41, 27.02.2024
Süleyman Şenyurt
,
Kemal Eren
,
Kebire Hilal Ayvacı
Abstract
In this study, we investigate the condition that a given polynomial curve with respect to the Frenet like curve (Flc) frame is a Tzitzeica curve. We also show that any planar polynomial curve cannot be a Tzitzeica curve. Finally, the condition to be the Tzitzeica curve for each of the spherical indicatrix curves defined according to the Flc frame is expressed, separately.
References
- REFERENCES
- [1] Tzitzeica G. Sur Certaines Courbes Gouches. Ann De I’Ec Normale Sup. 1911;28:9–32. [CrossRef]
- [2] Agnew AF, Bobe A, Boskoff WG, Suceava BD. Tzitzeica curves and surfaces. Math J 2010;12:1–18. [CrossRef]
- [3] Karacan MK, Bükçü B. On the elliptic cylindrical Tzitzeica curves in Minkowski 3-space. Sci Manga 2009:44–48.
- [4] Crasmareanu M. Cylindrical Tzitzeica curves implies forced harmonic oscillators. Balkan J Geom Appl 2002;7:37–42.
- [5] Constantinescu O, Crasmareanu M. A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwald type. Balkan J Geom Appl 2011;16:27–34.
- [6] Bobe A, Boskoff WG, Ciuca MG. Tzitzeica-Type centro-affine invariants in Minkowski spaces. An St Univ Ovidius Constanta 2012;20:27–34. [CrossRef]
- [7] Bila N. Symmetry reductions for the Tzitzeica curve equation. Math and Comp Sci 2012;16.
- [8] Bayram B, Tunç E, Arslan K, Öztürk G. On Tzitzeica curves in Euclidean 3-space. Facta Univ Ser Math Inform 2018;33:409–416. [CrossRef]
- [9] Özen KE, Tosun M. Characterization of Tzitzeica curves using positional adapted frame. 2022;10:260268.
- [10] Eren K, Ersoy S. Characterizations of Tzitzeica curves using Bishop frames. Math Meth Appl Sci 2021;1–14. [CrossRef]
- [11] O'Neill B. Elementary Differential Geometry. New York: Academic Press Inc.; 1966. [CrossRef]
- [12] Dede M. A new representation of tubular surfaces. Houston J Math 2019;45:707–720.