Research Article
BibTex RIS Cite

Sulu Çözeltilerden Etkin Fosfat Giderimi için Ceviz Kabuğu Bazlı Aktif Karbon Kullanımı

Year 2022, , 22 - 40, 29.06.2022
https://doi.org/10.33484/sinopfbd.1013083

Abstract

Bu çalışmada Türkiye'de bol miktarda bulunan ve düşük maliyetli biyokütle atığı olan ceviz kabuğu aktif karbon üretimi için kullanılmıştır ve üretilen aktif karbon ile sulu çözeltilerden fosfat uzaklaştırılması araştırılmıştır. ZnCl2 kimyasal aktivasyon yöntemi ile adsorbent hazırlamak için kullanılmıştır. Üretilen aktif karbonlar nem içeriği, kül içeriği, iyot sayısı, taramalı elektron mikroskopisi (SEM) ve Fourier transform kızılötesi spektroskopi (FT-IR) analizleri ile karakterize edilmiştir. Brunauer-Emmett-Teller (BET) denklemi kullanılarak aktif karbonun spesifik yüzey alanı 415.433 m2/g olarak hesaplanmıştır. pH, adsorbent miktarı, karıştırma hızı ve sıcaklığın etkileri araştırılmıştır. Adsorpsiyon izotermi farklı izoterm modelleri ile analiz edilmiştir. Langmuir izoterminin deneysel veriler ile uyumlu olduğu görülmüştür. Sözde ikinci dereceden kinetik modelde, teorik olarak bulunan değerler (qe,cal) deneylerle belirlenenlere çok yakındır (qe,exp). Sonuçlar, WSAC üzerindeki fosfat adsorpsiyonunun sözde ikinci derece kinetik modele uyduğunu göstermiştir. Termodinamik analize göre, WSAC'deki fosfat adsorpsiyonu çalışılan koşullarda endotermiktir.

References

  • Vikrant, K., Kim, K., Ok, Y. S., Tsang, D. C. W., Tsang, Y. F., Giri, B. S., & Singh, R. S. (2018). Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 616–617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193
  • Jiang, J., Kim, D. I., Dorji, P., Phuntsho, S., Hong S., & Shon, H. K. (2019). Phosphorus removal mechanisms from domestic wastewater by membrane capacitive deionization and system optimization for enhanced phosphate removal. Process Safety and Environmental Protection, 126, 44–52. https://doi.org/10.1016/j.psep.2019.04.005
  • Zelmanov, G., & Semiat, R. (2014). Phosphate removal from aqueous solution by an adsorption ultrafiltration system. Separation and Purification Technology, 132, 487-495. https://doi.org/10.1016/j.seppur.2014.06.008
  • Delaney, P., McManamon, C., Hanrahan, J. P., Copley, M. P., Holmes, J. D., & Morris, M. A. (2011). Development of chemically engineered porous metal oxides for phosphate removal. Journal of Hazardous Materials, 185(1), 382-391. https://doi.org/10.1016/j.jhazmat.2010.08.128
  • Mulkerrins, D., Dobson, A. D. W., & Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters. Environment International, 30(2), 249-259. https://doi.org/10.1016/S0160-4120(03)00177-6
  • Clark, T., Stephenson, T., & Pearce, P. A. (1997). Phosphorus removal by chemical precipitation in a biological aerated filter. Water Research, 31(10), 2557-2563. https://doi.org/10.1016/S0043-1354(97)00091-2
  • Xing, B., Chen, T., Liu, H., Qing, C., Xie, J., & Xie, Q. (2017). Removal of phosphate from aqueous solution by activated siderite ore: Preparation, performance and mechanism. Journal of the Taiwan Institue of Chemical Engineers, 80, 875-882. https://doi.org/10.1016/j.jtice.2017.07.016
  • Özacar, M. (2003). Adsorption of phosphate from aqueous solution onto alunite. Chemosphere, 51(4), 321–327. https://doi.org/10.1016/S0045-6535(02)00847-0
  • Huang, X., Liao, X., & Shi, B. (2009). Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste. Journal of Hazardous Materials, 166(2-3), 1261–1265. https://doi.org/10.1016/j.jhazmat.2008.12.045
  • Fan, C., & Zhang, Y. (2018). Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. Journal of Geochemical Exploration, 188, 95–100. https://doi.org/10.1016/j.gexplo.2018.01.020
  • Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl 2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359–365. https://doi.org/10.1016/j.jcis.2004.08.015
  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2013). A review: Production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of Chemical Technology & Biotechnology, 88(7), 1183–1190. https://doi.org/10.1002/jctb.4028
  • Tsai, W. T., Chang, C. Y., & Lee, S. L. (1998). A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresource Technology, 64(3), 211–217. https://doi.org/10.1016/S0960-8524(97)00168-5
  • Bansal, R. C., & Goyal, M. (2005). Activated Carbon Adsorption. CRC Press Taylor & Francis Group, USA.
  • Kim, J. W., Sohn, M. H., Kim, D. S., Sohn, S. M., & Kwon, Y. S. (2001). Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu2+ ion. Journal of Hazardous Materials, 85(3), 301–315. https://doi.org/10.1016/S0304-3894(01)00239-4
  • Yahya, M.A., Al-Qodah, Z., & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable & Sustainable Energy Reviews, 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051
  • Girgis, B. S., Yunis, S. S., & Soliman, A. M. (2002). Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 57(1), 164–172. https://doi.org/10.1016/S0167-577X(02)00724-3
  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 85(4), 833–846. https://doi.org/10.1016/j.jenvman.2007.07.031
  • ASTM D4607-14 and ASTM (2006). Standard Test Method for Determination of Iodine Number of Activated Carbon 1, ASTM International, 94, 1–5.
  • Standard Methods for the Examination of Water and Wastewater, (2005). 21st edn, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • Tuna, M. (1996). The usage of west Karadeniz region hazelnut shells as active carbon. (Thesis no. 57082) [Master Thesis, Sakarya University].
  • Çiçek, İ. (1998). Production of activated carbon from agricultural wastes. (Thesis no. 75384) [Master Thesis, Istanbul Technical University].
  • Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23–28. https://doi.org/10.1016/j.indcrop.2005.03.001
  • Özçimen, D. (2007) Evaluation of various vegetable residues by carbonization. (Thesis no. 223161) [Ph.D. Thesis, Istanbul Technical University].
  • Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27(9), 1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009
  • Döşemen, Y. (2009) Production of activated carbon from chestnut shell. (Thesis no. 251540) [Master Thesis, Istanbul Technical University].
  • Şen, N. (2009). Production of activated aarbon from hazelnut shells and characterization. (Thesis no. 246951) [Master Thesis, Fırat University].
  • Zabihi, M., Haghighi, Asl A., & Ahmadpour, A. (2010). Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. Journal of Hazardous Materials, 174(1-3), 251–256. https://doi.org/10.1016/j.jhazmat.2009.09.044
  • Sayın, Z. E., Kumaş, C., & Ergül, B. (2016). Activated carbon production from hazelnut shells. Afyon Kocatepe University Journal Science and Engineering, 16, 409–419. https://doi.org/10.5578/fmbd.28129
  • Guo, Y., & Rockstraw, D. A. (2007). Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Materials, 100(1-3), 12–19. https://doi.org/10.1016/j.micromeso.2006.10.006
  • Yang, J., & Qiu, K. (2010). Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, 165(1), 209–217. https://doi.org/10.1016/j.cej.2010.09.019
  • Nazari, G., Abolghasemi, H., & Esmaieli, M. (2016). Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon. Journal of the Taiwan Institue of Chemical Engineers, 58, 357–365. https://doi.org/10.1016/j.jtice.2015.06.006
  • Xu, X., Gao, B., Tan, X., Zhang, X., Yue, Q., Wang, Y., & Li, Q. (2013). Nitrate adsorption by stratified wheat straw resin in lab-scale columns. Chemical Engineering Journal, 226(1-6), 1–6. https://doi.org/10.1016/j.cej.2013.04.033
  • Qiao, H., Mei, L.,Chen, G., Liu, H., Peng, C., Ke, F., Hou, R., Wan, X., & Cai, H. (2019). Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes. Applied Surface Science, 483, 114–122. https://doi.org/10.1016/j.apsusc.2019.03.147
  • Özacar, M., & Şengil, I. A. (2005). Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource Technology, 96(7), 791–795. https://doi.org/10.1016/j.biortech.2004.07.011
  • Arslan, A., & Veli, S. (2012). Zeolite 13 X for adsorption of ammonium ions from aqueous solutions and hen slaughterhouse wastewaters. Journal of The Taiwan Institute of Chemical Engineers, 43(3), 393-398. https://doi.org/10.1016/j.jtice.2011.11.003
  • Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127(1-3), 111–119, https://doi.org/10.1016/j.cej.2006.09.010
  • Annadurai, G., Ling, L. Y., & Lee, J. F. (2008). Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials, 152(1), 337–346. https://doi.org/10.1016/j.jhazmat.2007.07.002
  • Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by naturel and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1-2), 362-371. https://doi.org/10.1016/j.jhazmat.2006.12.034
  • Alberti, G., Amendola, V., Pesavento, M., & Biesuz, R. (2012). Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena. Coordination Chemistry Reviews, 256(1-2),28–45. https://doi.org/10.1016/j.ccr.2011.08.022
  • Kilislioglu, A., & Bilgin, B. (2003). Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Applied Radiation Isotopes, 58(2), 155–160. https://doi.org/10.1016/S0969-8043(02)00316-0
  • Tan, I.A.W., Ahmad, A.L., & Hameed, B.H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2-3), 473–482. https://doi.org/10.1016/j.jhazmat.2008.08.025
  • Tomar, V., Prasad, S. & Kumar, D. (2014). Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchemical Journal, 112, 97-103. https://doi.org/10.1016/j.microc.2013.09.010
  • Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006
  • Eren, E., & Afsin, B. (2007). Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. Dyes and Pigments, 73(2), 162–167. https://doi.org/10.1016/j.dyepig.2005.11.004
  • Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2(3), 1434–1444. https://doi.org/10.1016/j.jece.2014.07.008
  • Hamdaoui, O., Saoudi, F., Chiha, M. & Naffrechoux, E. (2008). Sorption of malachite green by a novel sorbent, dead leaves of plane tree: Equilibrium and kinetic modeling. Chemical Engineering Journal, 143(1-3), 73-84. https://doi.org/10.1016/j.cej.2007.12.018
  • Alkan, M., Demirbaş, Ö., & Doğan, M. (2007). Adsorption kinetics and thermodynamics of an anionic dye onto Sepiolite, Microporous and Mesoporous Materials, 101(3), 388-396. https://doi.org/10.1016/j.micromeso.2006.12.007
  • Han, C., Lalley, J., Iyanna, N., & Nadagouda, N. M. (2017). Removal of phosphate using calcium and magnesium-modified iron-based adsorbents, Materials Chemistry and Physics, 198, 115-124. http://dx.doi.org/10.1016/j.matchemphys.2017.05.038
  • Pawar, R., Gupta, P., Lalhmunsiama, Bajaj, H. C., & Lee, S. (2016). Al-intercalated acid activated bentonite beads fort he removal of aqueous phosphate, Science of the Total Environment, 572, 1222-1230. https://doi.org/10.1016/j.scitotenv.2016.08.040
  • Yadav, D., Kapur, M., Kumar, P., & Mondal, M.K. (2015). Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue, Process Safety and Environmental Protection, 94, 402-409. https://doi.org/10.1016/j.psep.2014.09.005
  • Cao, J., Lin, J., Fang, F., Zhang, M., & Hu, Z. (2014). A new adsorbent by modifying walnut Shell fort he removal of anionic dye: Kinetic and thermodynamic studies, Bioresource Technology, 163, 199-205. https://doi.org/10.1016/j.biortech.2014.04.046

Using Walnut Shell Based Activated Carbon for the Efficient Removal of Phosphate from Aqueous Solutions

Year 2022, , 22 - 40, 29.06.2022
https://doi.org/10.33484/sinopfbd.1013083

Abstract

In this study, walnut shell, which is abundant in Turkey and low-cost biomass waste, has been used for activated carbon production and phosphate removal from aqueous solutions with the produced activated carbon was investigated. ZnCl2 was used to prepare adsorbent by chemical activation method. Produced activated carbons were characterized by moisture content, ash content, iodine number, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analyses. The specific surface area was calculated as 415.433 m2/g from the isotherms using the Brunauer-Emmett-Teller (BET) equation. The effects of pH, adsorbent amount, agitation speed and temperature were investigated. Different adsorption isotherm models were applied. It was found that the Langmuir isotherm provided the best fit for the experimental data. In the pseudo- second order kinetic model, the values found theoretically (qe,cal) were very similar to those determined by experiments (qe,exp). The results showed that the adsorption of phosphate on the WSAC fits the pseudo- second order kinetic model. According to the thermodynamics analysis, phosphate adsorption on WSAC was endothermic under the studied conditions.

References

  • Vikrant, K., Kim, K., Ok, Y. S., Tsang, D. C. W., Tsang, Y. F., Giri, B. S., & Singh, R. S. (2018). Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 616–617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193
  • Jiang, J., Kim, D. I., Dorji, P., Phuntsho, S., Hong S., & Shon, H. K. (2019). Phosphorus removal mechanisms from domestic wastewater by membrane capacitive deionization and system optimization for enhanced phosphate removal. Process Safety and Environmental Protection, 126, 44–52. https://doi.org/10.1016/j.psep.2019.04.005
  • Zelmanov, G., & Semiat, R. (2014). Phosphate removal from aqueous solution by an adsorption ultrafiltration system. Separation and Purification Technology, 132, 487-495. https://doi.org/10.1016/j.seppur.2014.06.008
  • Delaney, P., McManamon, C., Hanrahan, J. P., Copley, M. P., Holmes, J. D., & Morris, M. A. (2011). Development of chemically engineered porous metal oxides for phosphate removal. Journal of Hazardous Materials, 185(1), 382-391. https://doi.org/10.1016/j.jhazmat.2010.08.128
  • Mulkerrins, D., Dobson, A. D. W., & Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters. Environment International, 30(2), 249-259. https://doi.org/10.1016/S0160-4120(03)00177-6
  • Clark, T., Stephenson, T., & Pearce, P. A. (1997). Phosphorus removal by chemical precipitation in a biological aerated filter. Water Research, 31(10), 2557-2563. https://doi.org/10.1016/S0043-1354(97)00091-2
  • Xing, B., Chen, T., Liu, H., Qing, C., Xie, J., & Xie, Q. (2017). Removal of phosphate from aqueous solution by activated siderite ore: Preparation, performance and mechanism. Journal of the Taiwan Institue of Chemical Engineers, 80, 875-882. https://doi.org/10.1016/j.jtice.2017.07.016
  • Özacar, M. (2003). Adsorption of phosphate from aqueous solution onto alunite. Chemosphere, 51(4), 321–327. https://doi.org/10.1016/S0045-6535(02)00847-0
  • Huang, X., Liao, X., & Shi, B. (2009). Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste. Journal of Hazardous Materials, 166(2-3), 1261–1265. https://doi.org/10.1016/j.jhazmat.2008.12.045
  • Fan, C., & Zhang, Y. (2018). Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. Journal of Geochemical Exploration, 188, 95–100. https://doi.org/10.1016/j.gexplo.2018.01.020
  • Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl 2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359–365. https://doi.org/10.1016/j.jcis.2004.08.015
  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2013). A review: Production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of Chemical Technology & Biotechnology, 88(7), 1183–1190. https://doi.org/10.1002/jctb.4028
  • Tsai, W. T., Chang, C. Y., & Lee, S. L. (1998). A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresource Technology, 64(3), 211–217. https://doi.org/10.1016/S0960-8524(97)00168-5
  • Bansal, R. C., & Goyal, M. (2005). Activated Carbon Adsorption. CRC Press Taylor & Francis Group, USA.
  • Kim, J. W., Sohn, M. H., Kim, D. S., Sohn, S. M., & Kwon, Y. S. (2001). Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu2+ ion. Journal of Hazardous Materials, 85(3), 301–315. https://doi.org/10.1016/S0304-3894(01)00239-4
  • Yahya, M.A., Al-Qodah, Z., & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable & Sustainable Energy Reviews, 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051
  • Girgis, B. S., Yunis, S. S., & Soliman, A. M. (2002). Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 57(1), 164–172. https://doi.org/10.1016/S0167-577X(02)00724-3
  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 85(4), 833–846. https://doi.org/10.1016/j.jenvman.2007.07.031
  • ASTM D4607-14 and ASTM (2006). Standard Test Method for Determination of Iodine Number of Activated Carbon 1, ASTM International, 94, 1–5.
  • Standard Methods for the Examination of Water and Wastewater, (2005). 21st edn, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • Tuna, M. (1996). The usage of west Karadeniz region hazelnut shells as active carbon. (Thesis no. 57082) [Master Thesis, Sakarya University].
  • Çiçek, İ. (1998). Production of activated carbon from agricultural wastes. (Thesis no. 75384) [Master Thesis, Istanbul Technical University].
  • Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23–28. https://doi.org/10.1016/j.indcrop.2005.03.001
  • Özçimen, D. (2007) Evaluation of various vegetable residues by carbonization. (Thesis no. 223161) [Ph.D. Thesis, Istanbul Technical University].
  • Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27(9), 1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009
  • Döşemen, Y. (2009) Production of activated carbon from chestnut shell. (Thesis no. 251540) [Master Thesis, Istanbul Technical University].
  • Şen, N. (2009). Production of activated aarbon from hazelnut shells and characterization. (Thesis no. 246951) [Master Thesis, Fırat University].
  • Zabihi, M., Haghighi, Asl A., & Ahmadpour, A. (2010). Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. Journal of Hazardous Materials, 174(1-3), 251–256. https://doi.org/10.1016/j.jhazmat.2009.09.044
  • Sayın, Z. E., Kumaş, C., & Ergül, B. (2016). Activated carbon production from hazelnut shells. Afyon Kocatepe University Journal Science and Engineering, 16, 409–419. https://doi.org/10.5578/fmbd.28129
  • Guo, Y., & Rockstraw, D. A. (2007). Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Materials, 100(1-3), 12–19. https://doi.org/10.1016/j.micromeso.2006.10.006
  • Yang, J., & Qiu, K. (2010). Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, 165(1), 209–217. https://doi.org/10.1016/j.cej.2010.09.019
  • Nazari, G., Abolghasemi, H., & Esmaieli, M. (2016). Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon. Journal of the Taiwan Institue of Chemical Engineers, 58, 357–365. https://doi.org/10.1016/j.jtice.2015.06.006
  • Xu, X., Gao, B., Tan, X., Zhang, X., Yue, Q., Wang, Y., & Li, Q. (2013). Nitrate adsorption by stratified wheat straw resin in lab-scale columns. Chemical Engineering Journal, 226(1-6), 1–6. https://doi.org/10.1016/j.cej.2013.04.033
  • Qiao, H., Mei, L.,Chen, G., Liu, H., Peng, C., Ke, F., Hou, R., Wan, X., & Cai, H. (2019). Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes. Applied Surface Science, 483, 114–122. https://doi.org/10.1016/j.apsusc.2019.03.147
  • Özacar, M., & Şengil, I. A. (2005). Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource Technology, 96(7), 791–795. https://doi.org/10.1016/j.biortech.2004.07.011
  • Arslan, A., & Veli, S. (2012). Zeolite 13 X for adsorption of ammonium ions from aqueous solutions and hen slaughterhouse wastewaters. Journal of The Taiwan Institute of Chemical Engineers, 43(3), 393-398. https://doi.org/10.1016/j.jtice.2011.11.003
  • Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127(1-3), 111–119, https://doi.org/10.1016/j.cej.2006.09.010
  • Annadurai, G., Ling, L. Y., & Lee, J. F. (2008). Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials, 152(1), 337–346. https://doi.org/10.1016/j.jhazmat.2007.07.002
  • Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by naturel and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1-2), 362-371. https://doi.org/10.1016/j.jhazmat.2006.12.034
  • Alberti, G., Amendola, V., Pesavento, M., & Biesuz, R. (2012). Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena. Coordination Chemistry Reviews, 256(1-2),28–45. https://doi.org/10.1016/j.ccr.2011.08.022
  • Kilislioglu, A., & Bilgin, B. (2003). Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Applied Radiation Isotopes, 58(2), 155–160. https://doi.org/10.1016/S0969-8043(02)00316-0
  • Tan, I.A.W., Ahmad, A.L., & Hameed, B.H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2-3), 473–482. https://doi.org/10.1016/j.jhazmat.2008.08.025
  • Tomar, V., Prasad, S. & Kumar, D. (2014). Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchemical Journal, 112, 97-103. https://doi.org/10.1016/j.microc.2013.09.010
  • Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006
  • Eren, E., & Afsin, B. (2007). Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. Dyes and Pigments, 73(2), 162–167. https://doi.org/10.1016/j.dyepig.2005.11.004
  • Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2(3), 1434–1444. https://doi.org/10.1016/j.jece.2014.07.008
  • Hamdaoui, O., Saoudi, F., Chiha, M. & Naffrechoux, E. (2008). Sorption of malachite green by a novel sorbent, dead leaves of plane tree: Equilibrium and kinetic modeling. Chemical Engineering Journal, 143(1-3), 73-84. https://doi.org/10.1016/j.cej.2007.12.018
  • Alkan, M., Demirbaş, Ö., & Doğan, M. (2007). Adsorption kinetics and thermodynamics of an anionic dye onto Sepiolite, Microporous and Mesoporous Materials, 101(3), 388-396. https://doi.org/10.1016/j.micromeso.2006.12.007
  • Han, C., Lalley, J., Iyanna, N., & Nadagouda, N. M. (2017). Removal of phosphate using calcium and magnesium-modified iron-based adsorbents, Materials Chemistry and Physics, 198, 115-124. http://dx.doi.org/10.1016/j.matchemphys.2017.05.038
  • Pawar, R., Gupta, P., Lalhmunsiama, Bajaj, H. C., & Lee, S. (2016). Al-intercalated acid activated bentonite beads fort he removal of aqueous phosphate, Science of the Total Environment, 572, 1222-1230. https://doi.org/10.1016/j.scitotenv.2016.08.040
  • Yadav, D., Kapur, M., Kumar, P., & Mondal, M.K. (2015). Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue, Process Safety and Environmental Protection, 94, 402-409. https://doi.org/10.1016/j.psep.2014.09.005
  • Cao, J., Lin, J., Fang, F., Zhang, M., & Hu, Z. (2014). A new adsorbent by modifying walnut Shell fort he removal of anionic dye: Kinetic and thermodynamic studies, Bioresource Technology, 163, 199-205. https://doi.org/10.1016/j.biortech.2014.04.046
There are 52 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ayla Arslan 0000-0002-8410-256X

Şehriban Zeybek 0000-0003-3954-4163

Publication Date June 29, 2022
Submission Date October 21, 2021
Published in Issue Year 2022

Cite

APA Arslan, A., & Zeybek, Ş. (2022). Using Walnut Shell Based Activated Carbon for the Efficient Removal of Phosphate from Aqueous Solutions. Sinop Üniversitesi Fen Bilimleri Dergisi, 7(1), 22-40. https://doi.org/10.33484/sinopfbd.1013083


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.