Research Article
BibTex RIS Cite

5 Boyutta Kuasi-para-Sasaki Yapılar Üzerine

Year 2023, , 75 - 86, 21.07.2023
https://doi.org/10.33484/sinopfbd.1295803

Abstract

Bu çalışmada 5 boyutlu nilpotent Lie cebirleri üzerinde kuasi-para-Sasaki yapıların varlığı incelenmiştir. Birbirine izomorf olmayan altı tane Abelyen olmayan nilpotent Lie cebri vardır. Kuasi-para-Sasaki yapıların bu Lie cebirlerinden sadece birinde olduğu gösterilmiştir. Kuasi-para-Sasaki yapılar hemen-hemen parakontak metrik yapıların sınıflandırılmasına göre G_5+G_8 sınıfına karşılık gelmektedir. 5 boyutlu nilpotent bir Lie cebri üzerinde kuasi-para-Sasaki bir yapının G_5 veya G_8 sınıfından olduğu kanıtlanmıştır.

Project Number

22 ADP 011

References

  • Kaneyuki, S., & Williams, F. L. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Mathematical Journal, 99, 173–187.
  • Zamkovoy, S. (2009). Canonical connections on paracontact manifolds. Annals of Global Analysis and Geometry, 36(37). https://doi.org/10.1007/s10455-008-9147-3
  • Zamkovoy, S., & Nakova, G. (2018). The decomposition of almost paracontact metric manifolds in eleven classes revisited. Journal of Geometry, 109(1), 1–23. https://doi.org/10.1007/s00022-018-0423-5
  • Nakova, G.,& Zamkovoy, S. (2009). Almost paracontact manifolds. arXiv:0806.3859v2 [math.DG].
  • Zamkovoy, S. (2018). On para-Kenmotsu manifolds. Filomat, 32(14), 4971–4980. https://doi.org/10.2298/FIL1814971Z
  • Özdemir, N., Solgun, M., & Aktay, ¸ S. (2020). Almost paracontact metric structures on 5-dimensional nilpotent Lie algebras. Fundamental Journal of Mathematics and Applications, 3(2), 175–184. https://doi.org/10.33401/fujma.800222
  • Erken, I. K. (2019). Curvature properties of quasi-para-sasakian manifolds. International Electronic Journal of Geometry,, 12(2), 210–217. https://doi.org/10.36890/iejg.628085
  • Özdemir, N., Aktay ¸ S., & Solgun M. (2018). Almost paracontact structures obtained from G∗2(2) structures. Turkish Journal of Mathematics, 42 , 3025–3022. https://doi.org/10.3906/mat-1706-10
  • Dixmier, J. (1958). Sur les repr´esentations unitaires des groupes de Lie nilpotentes III. Canadian Journal of Mathematics, 10, 321–348.
  • Özdemir, N., Solgun, M., & Aktay, ¸ S. (2016). Almost contact metric structures on 5-dimensional nilpotent Lie algebras. Symmetry, 8, 76. https://doi.org/10.3390/sym8080076
  • Özdemir, N., Aktay ¸ S., & Solgun M. (2019). Quasi-Sasakian structures on 5-dimensional nilpotent Lie algebras. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(1), 326–333. https://doi.org/10.31801/cfsuasmas.416563
  • Welyczko, J. (2009). On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results in Mathematics, 54(3), 377–387. https://doi.org/10.1007/s00025-009-0364-2 86

On Quasi-para-Sasakian Structures on 5-dimensions

Year 2023, , 75 - 86, 21.07.2023
https://doi.org/10.33484/sinopfbd.1295803

Abstract

In this study, we investigate the existence of quasi-para-Sasakian structures on five dimensional nilpotent
Lie algebras. There are six non-abelian nilpotent Lie algebras. We show that quasi-para-Sasakian structures exist only on one of these algebras. Quasi-para-Sasakian structures correspond to the class G_5+G_8 in the classification of almost paracontact metric structures. We show that a quasi-para-Sasakian structure on a five dimensional nilpotent Lie algebra is either in G_5 or G_8.

Supporting Institution

Eskişehir Technical University

Project Number

22 ADP 011

References

  • Kaneyuki, S., & Williams, F. L. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Mathematical Journal, 99, 173–187.
  • Zamkovoy, S. (2009). Canonical connections on paracontact manifolds. Annals of Global Analysis and Geometry, 36(37). https://doi.org/10.1007/s10455-008-9147-3
  • Zamkovoy, S., & Nakova, G. (2018). The decomposition of almost paracontact metric manifolds in eleven classes revisited. Journal of Geometry, 109(1), 1–23. https://doi.org/10.1007/s00022-018-0423-5
  • Nakova, G.,& Zamkovoy, S. (2009). Almost paracontact manifolds. arXiv:0806.3859v2 [math.DG].
  • Zamkovoy, S. (2018). On para-Kenmotsu manifolds. Filomat, 32(14), 4971–4980. https://doi.org/10.2298/FIL1814971Z
  • Özdemir, N., Solgun, M., & Aktay, ¸ S. (2020). Almost paracontact metric structures on 5-dimensional nilpotent Lie algebras. Fundamental Journal of Mathematics and Applications, 3(2), 175–184. https://doi.org/10.33401/fujma.800222
  • Erken, I. K. (2019). Curvature properties of quasi-para-sasakian manifolds. International Electronic Journal of Geometry,, 12(2), 210–217. https://doi.org/10.36890/iejg.628085
  • Özdemir, N., Aktay ¸ S., & Solgun M. (2018). Almost paracontact structures obtained from G∗2(2) structures. Turkish Journal of Mathematics, 42 , 3025–3022. https://doi.org/10.3906/mat-1706-10
  • Dixmier, J. (1958). Sur les repr´esentations unitaires des groupes de Lie nilpotentes III. Canadian Journal of Mathematics, 10, 321–348.
  • Özdemir, N., Solgun, M., & Aktay, ¸ S. (2016). Almost contact metric structures on 5-dimensional nilpotent Lie algebras. Symmetry, 8, 76. https://doi.org/10.3390/sym8080076
  • Özdemir, N., Aktay ¸ S., & Solgun M. (2019). Quasi-Sasakian structures on 5-dimensional nilpotent Lie algebras. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(1), 326–333. https://doi.org/10.31801/cfsuasmas.416563
  • Welyczko, J. (2009). On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results in Mathematics, 54(3), 377–387. https://doi.org/10.1007/s00025-009-0364-2 86
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Şirin Aktay 0000-0003-2792-3481

Ümmü Kocabaş 0000-0003-0946-5544

Project Number 22 ADP 011
Early Pub Date July 20, 2023
Publication Date July 21, 2023
Submission Date May 11, 2023
Published in Issue Year 2023

Cite

APA Aktay, Ş., & Kocabaş, Ü. (2023). On Quasi-para-Sasakian Structures on 5-dimensions. Sinop Üniversitesi Fen Bilimleri Dergisi, 8(1), 75-86. https://doi.org/10.33484/sinopfbd.1295803


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.