Research Article
BibTex RIS Cite

An Algorithm for Group Decision Making Problems via Soft Set Relations

Year 2025, Volume: 10 Issue: 1, 29 - 41, 29.06.2025
https://doi.org/10.33484/sinopfbd.1581388

Abstract

Decision-making is a critical process in various fields, often complicated by uncertainty and incomplete information. Soft set theory, introduced as a mathematical tool to handle such uncertainties, offers a flexible and efficient framework for addressing these challenges. The purpose of this study is developing a method by using graph representation of soft set relation for group decision making problems with several examples as application. The algorithm integrates key soft set relations, allowing for the systematic evaluation of alternatives against multiple criteria. Through a some of examples and case studies, effectiveness of the algorithm in decision-making applications is examined. Results show that the soft set-based approach provides a more adaptable and precise method for decision-making compared to traditional techniques, making it a valuable tool for complex decision environments.

References

  • Molodtsov, D. (1999). Soft set theory-first results, Computers and Mathematics with Applications, 37, 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
  • Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44, 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  • Chen, D., Tsang, E. C. C., Yeung, D. S., & Wang, X. (2005). The parameterization reduction of soft sets and its applications, Computer and Mathematics with Applications, 49, 757–763. https://doi.org/10.1016/j.camwa.2004.10.036
  • Çağman, N., & Enginoğlu, S. (2010). Soft matrix theory and its decision making, Computers and Mathematics with Applications, 59, 3308-3314. https://doi.org/10.1016/j.camwa.2010.03.015
  • Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni-int decision making, European Journal of Operational Research, 207, 848–855. https://doi.org/10.1016/j.ejor.2010.05.004
  • Hayat, K., Ali, M. I., Cao, B. Y., & Yang, X. P. (2017). A new type-2 soft set: type-2 soft graphs and their applications, Advances in Fuzzy Systems Articles, 34, 17-37. https://doi.org/10.1155/2017/6162753
  • Danjuma, S., Herawan, T., Ismail, M. A., Bakar, A. A. B., Zeki, A., & Chiroma, A. (2017). A review on soft set-based parameter reduction and decision making, IEEE Access, 5, 4671-4689. https://doi.org/10.1109/ACCESS.2017.2682231
  • Khameneh, A. Z., & Kılıçman, A. (2019). Multi-attribute decision-making based on soft set theory: a systematic review, Soft Computing, 23, 6899–6920. https://doi.org/10.1007/s00500-018-3330-7
  • Alcantud, J. C. R., Khameneh, A.Z., Garcıa, G.S., & Akram, M. (2024). A systematic literature review of soft set theory, Neural Computing and Applications, 36, 8951–8975. https://doi.org/10.1007/s00521-024-09552-x
  • Babitha, K. V., & Sunil, J.J. (2010). Soft set relations and functions, Computer and Mathematics with Applications, 60,1840-1849. https://doi.org/10.1016/j.camwa.2010.07.014
  • Polat, N. C., Yaylalı, G., & Tanay, B. (2017). Tolerance Soft Set Relation on a Soft Set and its Matrix Applications, Fundamenta Informaticae, 152(2), 107-122. https://doi.org/10.3233/FI-2017-1514
  • Yang, H. L., & Guo, Z. L. (2011). Kernels and closures of soft set relations, and soft set relation mappings, Computers and Mathematics with Applications, 61, 651-662. https://doi.org/10.1016/j.camwa.2010.12.011
  • Zhang, X. (2014). On interval soft set with application, International Journal of Computational Intelligence Systems, 7(1), 186–196. https://doi.org/10.1080/18756891.2013.862354
  • Yaylalı, G., Polat, Ç. N. & Tanay, B. (2021). A Soft Interval Based Decision Making Method and Its Computer Application, Foundations of Computing and Decision Sciences, 46(3), 273-296. https://doi.org/10.2478/fcds-2021-0018
  • Polat, N. C., Yaylalı, G. & Tanay, B. (2019). A method for decision making problems by using graph representation of soft set relations, Intelligent Automation and Soft Computing, 25, 305-311. https://doi.org/10.31209/2018.100000006
  • Atagün, A. O., Kamacı, H., & Oktay, O. (2018). Reduced soft matrices and generalized products with applications in decision making, Neural Computing and Applications, 29, 445-456. https://doi.org/10.1007/s00521-016-2542-y
  • Kamacı, H., Atagün, A.O. & Sönmezoğlu, A. (2018). Row-products of soft matrices with applications in multiple-disjoint decision making, Applied Soft Computing, 62, 892-914. https://doi.org/10.1016/j.asoc.2017.09.024
  • Kamacı, H., Saltık, K., Akız, H. F. & Atagün, A.O. (2018). Cardinality inverse soft matrix theory and its applications in multicriteria group decision making, Journal of Intelligent & Fuzzy Systems, 34(3), 2031-2049. https://doi.org/10.3233/JIFS-17876
  • Atagün, A. O. & Kamacı, H. (2024). Decompositions of soft sets and soft matrices with applications in group decision making, Scientia Iranica, 31(6), 518-534. https://doi.org/10.24200/sci.2021.58119.5575
  • Hayat, K., Cao, B. Y., Ali, M. I., Karaaslan, F., & Qin, Z. (2018). Characterizations of certain types of type 2 soft graphs, Discrete Dynamics in Nature and Society, 1, 8535703. https://doi.org/10.1155/2018/8535703
  • Grimaldi, R. P. (2004). Discrete and Combinatorial Mathematics (an Applied Introduction), Fifth Edition, Addison-Wesley.

Grup Karar Verme Problemleri için Esnek Küme Bağıntılarıyla bir Algoritma

Year 2025, Volume: 10 Issue: 1, 29 - 41, 29.06.2025
https://doi.org/10.33484/sinopfbd.1581388

Abstract

Karar verme, çeşitli çalışma alanlarında genellikle belirsizlik ve eksik bilgi nedeniyle karmaşık hale gelen kritik bir süreçtir. Bu tür belirsizliklerle başa çıkmak için matematiksel bir araç olarak tanıtılan esnek küme teorisi, bu zorlukları ele almak için esnek ve etkili bir çerçeve sunar. Bu çalışmanın amacı, uygulama olarak birkaç örnekle grup karar verme problemleri için esnek küme ilişkisinin graf gösterimini kullanarak bir yöntem geliştirmektir. Algoritma, alternatiflerin birden fazla kritere göre sistematik olarak değerlendirilmesine olanak tanıyan temel esnek küme bağıntılarını kullanır. Örnekler aracılığıyla, algoritmanın karar verme uygulamalarındaki sağlamlığını ve etkinliğini gösterilmiştir. Sonuçlar, esnek küme tabanlı yaklaşımın, geleneksel tekniklere kıyasla karar verme için daha uyarlanabilir ve kapsamlı bir yöntem sağladığını ve karmaşık karar verme problemleri için değerli bir araç haline getirdiğini göstermektedir.

References

  • Molodtsov, D. (1999). Soft set theory-first results, Computers and Mathematics with Applications, 37, 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
  • Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44, 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  • Chen, D., Tsang, E. C. C., Yeung, D. S., & Wang, X. (2005). The parameterization reduction of soft sets and its applications, Computer and Mathematics with Applications, 49, 757–763. https://doi.org/10.1016/j.camwa.2004.10.036
  • Çağman, N., & Enginoğlu, S. (2010). Soft matrix theory and its decision making, Computers and Mathematics with Applications, 59, 3308-3314. https://doi.org/10.1016/j.camwa.2010.03.015
  • Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni-int decision making, European Journal of Operational Research, 207, 848–855. https://doi.org/10.1016/j.ejor.2010.05.004
  • Hayat, K., Ali, M. I., Cao, B. Y., & Yang, X. P. (2017). A new type-2 soft set: type-2 soft graphs and their applications, Advances in Fuzzy Systems Articles, 34, 17-37. https://doi.org/10.1155/2017/6162753
  • Danjuma, S., Herawan, T., Ismail, M. A., Bakar, A. A. B., Zeki, A., & Chiroma, A. (2017). A review on soft set-based parameter reduction and decision making, IEEE Access, 5, 4671-4689. https://doi.org/10.1109/ACCESS.2017.2682231
  • Khameneh, A. Z., & Kılıçman, A. (2019). Multi-attribute decision-making based on soft set theory: a systematic review, Soft Computing, 23, 6899–6920. https://doi.org/10.1007/s00500-018-3330-7
  • Alcantud, J. C. R., Khameneh, A.Z., Garcıa, G.S., & Akram, M. (2024). A systematic literature review of soft set theory, Neural Computing and Applications, 36, 8951–8975. https://doi.org/10.1007/s00521-024-09552-x
  • Babitha, K. V., & Sunil, J.J. (2010). Soft set relations and functions, Computer and Mathematics with Applications, 60,1840-1849. https://doi.org/10.1016/j.camwa.2010.07.014
  • Polat, N. C., Yaylalı, G., & Tanay, B. (2017). Tolerance Soft Set Relation on a Soft Set and its Matrix Applications, Fundamenta Informaticae, 152(2), 107-122. https://doi.org/10.3233/FI-2017-1514
  • Yang, H. L., & Guo, Z. L. (2011). Kernels and closures of soft set relations, and soft set relation mappings, Computers and Mathematics with Applications, 61, 651-662. https://doi.org/10.1016/j.camwa.2010.12.011
  • Zhang, X. (2014). On interval soft set with application, International Journal of Computational Intelligence Systems, 7(1), 186–196. https://doi.org/10.1080/18756891.2013.862354
  • Yaylalı, G., Polat, Ç. N. & Tanay, B. (2021). A Soft Interval Based Decision Making Method and Its Computer Application, Foundations of Computing and Decision Sciences, 46(3), 273-296. https://doi.org/10.2478/fcds-2021-0018
  • Polat, N. C., Yaylalı, G. & Tanay, B. (2019). A method for decision making problems by using graph representation of soft set relations, Intelligent Automation and Soft Computing, 25, 305-311. https://doi.org/10.31209/2018.100000006
  • Atagün, A. O., Kamacı, H., & Oktay, O. (2018). Reduced soft matrices and generalized products with applications in decision making, Neural Computing and Applications, 29, 445-456. https://doi.org/10.1007/s00521-016-2542-y
  • Kamacı, H., Atagün, A.O. & Sönmezoğlu, A. (2018). Row-products of soft matrices with applications in multiple-disjoint decision making, Applied Soft Computing, 62, 892-914. https://doi.org/10.1016/j.asoc.2017.09.024
  • Kamacı, H., Saltık, K., Akız, H. F. & Atagün, A.O. (2018). Cardinality inverse soft matrix theory and its applications in multicriteria group decision making, Journal of Intelligent & Fuzzy Systems, 34(3), 2031-2049. https://doi.org/10.3233/JIFS-17876
  • Atagün, A. O. & Kamacı, H. (2024). Decompositions of soft sets and soft matrices with applications in group decision making, Scientia Iranica, 31(6), 518-534. https://doi.org/10.24200/sci.2021.58119.5575
  • Hayat, K., Cao, B. Y., Ali, M. I., Karaaslan, F., & Qin, Z. (2018). Characterizations of certain types of type 2 soft graphs, Discrete Dynamics in Nature and Society, 1, 8535703. https://doi.org/10.1155/2018/8535703
  • Grimaldi, R. P. (2004). Discrete and Combinatorial Mathematics (an Applied Introduction), Fifth Edition, Addison-Wesley.
There are 21 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Nazan Polat 0000-0002-6893-9124

Publication Date June 29, 2025
Submission Date November 7, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Polat, N. (2025). An Algorithm for Group Decision Making Problems via Soft Set Relations. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(1), 29-41. https://doi.org/10.33484/sinopfbd.1581388


Articles published in Sinopjns are licensed under CC BY-NC 4.0.