Research Article
BibTex RIS Cite

Peach Core Shell for Removal of Malachite Green: Characterization and Kinetics Analysis

Year 2021, , 9 - 20, 11.06.2021
https://doi.org/10.33484/sinopfbd.761068

Abstract

In this research, adsorption of malachite green in aqueous medium on peach seed shell used as adsorbent was aimed. For this purpose, first the characterization of adsorbent was examined and then a proper kinetic model was obtained by using the parameters affecting the adsorption process. In characterization studies; Scanning Electron Microscope, Thermal Gravimetry / Differential Scanning Calorimetry, Differential Thermal Gravimetry, X-Ray Diffraction and Surface analysis were done. With Thermal Gravimetry / Differential Scanning Calorimetry analysis, it was observed that the peach kernel degraded at temperatures between 25-150°C, 200-380°C and 380-580°C. As a result of X-Ray Diffraction analysis, it was revealed that the adsorbent structure has an amorphous character. In addition, by surface analysis, surface area, pore volume and average pore diameter values of the adsorbent were determined. In order to determine the kinetics of the adsorption process, commonly used models were examined and it was found that the kinetic model fit the pseudo-second order. In the light of the results obtained, it can be said that the peach seed shell will contribute greatly to the removal of malachite green from aqueous solutions industrially.

References

  • Kupeta, A. J. K., Naidoo, E. B., & Ofomaja, A. E. (2018). Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass. Journal of Cleaner Production, 179, 191–209. https://doi.org/10.1016/j.jclepro.2018.01.034
  • Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229–S3238. http://dx.doi.org/10.1016/j.arabjc.2013.12.019
  • Mohamed, A., Ghobara, M. M., Abdelmaksoud, M. K., & Mohamed, G. G. (2019). A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Separation and Purification Technology, 210, 935–42. https://doi.org/10.1016/j.seppur.2018.09.014
  • Lacin, O., Haghighatnia, A., Demir, F., Sevim, F., & Laçin, O. (2019). Adsorption characteristics and behaviors of natural red clay for removal of BY28 from aqueous solutions. International Journal of Trend in Scientific Research and Development, 3(2), 1037-1047. https://doi.org/10.31142/ijtsrd21544
  • Mashkoor, F., & Nasar, A. (2019). Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. Journal of Molecular Liquids, 274, 315–327. https://doi.org/10.1016/j.molliq.2018.10.119
  • Othman, N. H, Alias, N. H., Shahruddin, M. Z., Bakar, N. F. A., Him, N. R. N., & Lau, W. J. (2018). Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. Journal of Environmental Chemical Engineering, 6(2), 2803-2811. https://doi.org/10.1016/j.jece.2018.04.024
  • Ahmad, M. A., & Alrozi, R. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 71, 510–516. https://doi.org/10.1016/j.cej.2011.04.018
  • Subbaiah, M. V., & Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128, 109–17. https://doi.org/10.1016/j.ecoenv.2016.02.016
  • Türkiye İstatistik Kurumu, Faaliyet raporu, 2011. https://www. tuik.gov.tr/jsp/duyuru/ upload/ FR-2011.pdf
  • Çiçekçi, A., Dönmez, B., Kavci, E., & Laçin, Ö. (2020). Malahit yeşilinin şeftali çekirdeği kabuğu üzerine adsorpsiyon izotermi ve termodinamiği. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 103-111. https://doi.org/10.33484/sinopfbd.70105
  • Tang, S. H., & Zaini, M. A. A. (2017). Malachite green adsorption by potassium salts activated carbons derived from textile sludge: equilibrium, kinetics and thermodynamics studies. Asia-Pacific Journal of Chemical Engineering, 12(1), 159-172. https://doi:10.1002/apj.2063
  • Papinutti, L., Mouso, N., & Forchiassin, F. (2006). Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran–fomes sclerodermeus. Enzyme and Microbial Technology, 39, 848-853. https://doi:10.1016/j.enzmictec.2006.01.013
  • Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies, a review of recent literature. Progress in Polymer Science, 33, 399-447. https://doi:10.1016/j.progpolymsci.2007.11.001
  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl, 24, 1–39.
  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.
  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.
  • Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350–359. http://dx.doi.org/10.1016/j.biortech.2015.10.047
  • Al-Qodah, Z. (2000). Adsorption of dyes using shale oil ash. Water Research, 34(17), 4295-4303.
  • Lunhong, A., Haiyan, H., Zhonglan, C., Xing, W., & Jiang, J. (2010). Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chemical Engineering Journal, 156, 243-249. https://doi:10.1016/j.cej.2009.08.028
  • Azmier, A. M., & Rasyidah, A. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 171, 510-516. https://doi.org/10.1016/j.cej.2011.04.018

Malahit Yeşilinin Gideriminde Şeftali Çekirdeği Kabuğu: Karakterizasyon ve Kinetik İnceleme

Year 2021, , 9 - 20, 11.06.2021
https://doi.org/10.33484/sinopfbd.761068

Abstract

Bu araştırmada, adsorbent olarak kullanılan şeftali çekirdeği kabuğu üzerine sulu ortamdaki malahit yeşilinin adsorpsiyonu amaçlanmıştır. Bunun için önce adsorbentin karakterizasyonu incelenmiş ve sonrasında adsorpsiyon prosesini etkileyen parametrelerden faydalanarak uygun bir kinetik model elde edilmiştir. Karakterizasyon çalışmalarında; Taramalı Elektron mikroskobu, Termal Gravimetri/Diferansiyel Taramalı Kalorimetri, Diferansiyel Termal Gravimetri, X-Işını Kırınımı ve Yüzey analizleri yapılmıştır. Termal Gravimetri/Diferansiyel Taramalı Kalorimetri analizleri ile, şeftali çekirdeğinin 25-150°C, 200-380°C ve 380-580°C sıcaklık aralıklarında bozunduğu gözlenmiştir. X-Işını Kırınımı analizleri sonucu ise, adsorbent yapısının amorf bir karaktere sahip olduğunu ortaya koymuştur. Ayrıca, yüzey analizleri ile, adsorbentin yüzey alanı, por hacmi ve ortalama por çapı değerleri belirlenmiştir. Adsorpsiyon prosesinin kinetiğinin belirlenmesi için, yaygın olarak kullanılan modeller incelenmiş ve kinetik modelin yalancı ikinci mertebeye uyduğu tespit edilmiştir. Elde edilen sonuçlar ışığında, endüstriyel anlamda sulu çözeltilerden malahit yeşilinin uzaklaştırılması hususunda şeftali çekirdeği kabuğunun oldukça katkı sağlayacağı söylenebilir.

References

  • Kupeta, A. J. K., Naidoo, E. B., & Ofomaja, A. E. (2018). Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass. Journal of Cleaner Production, 179, 191–209. https://doi.org/10.1016/j.jclepro.2018.01.034
  • Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229–S3238. http://dx.doi.org/10.1016/j.arabjc.2013.12.019
  • Mohamed, A., Ghobara, M. M., Abdelmaksoud, M. K., & Mohamed, G. G. (2019). A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Separation and Purification Technology, 210, 935–42. https://doi.org/10.1016/j.seppur.2018.09.014
  • Lacin, O., Haghighatnia, A., Demir, F., Sevim, F., & Laçin, O. (2019). Adsorption characteristics and behaviors of natural red clay for removal of BY28 from aqueous solutions. International Journal of Trend in Scientific Research and Development, 3(2), 1037-1047. https://doi.org/10.31142/ijtsrd21544
  • Mashkoor, F., & Nasar, A. (2019). Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. Journal of Molecular Liquids, 274, 315–327. https://doi.org/10.1016/j.molliq.2018.10.119
  • Othman, N. H, Alias, N. H., Shahruddin, M. Z., Bakar, N. F. A., Him, N. R. N., & Lau, W. J. (2018). Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. Journal of Environmental Chemical Engineering, 6(2), 2803-2811. https://doi.org/10.1016/j.jece.2018.04.024
  • Ahmad, M. A., & Alrozi, R. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 71, 510–516. https://doi.org/10.1016/j.cej.2011.04.018
  • Subbaiah, M. V., & Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128, 109–17. https://doi.org/10.1016/j.ecoenv.2016.02.016
  • Türkiye İstatistik Kurumu, Faaliyet raporu, 2011. https://www. tuik.gov.tr/jsp/duyuru/ upload/ FR-2011.pdf
  • Çiçekçi, A., Dönmez, B., Kavci, E., & Laçin, Ö. (2020). Malahit yeşilinin şeftali çekirdeği kabuğu üzerine adsorpsiyon izotermi ve termodinamiği. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 103-111. https://doi.org/10.33484/sinopfbd.70105
  • Tang, S. H., & Zaini, M. A. A. (2017). Malachite green adsorption by potassium salts activated carbons derived from textile sludge: equilibrium, kinetics and thermodynamics studies. Asia-Pacific Journal of Chemical Engineering, 12(1), 159-172. https://doi:10.1002/apj.2063
  • Papinutti, L., Mouso, N., & Forchiassin, F. (2006). Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran–fomes sclerodermeus. Enzyme and Microbial Technology, 39, 848-853. https://doi:10.1016/j.enzmictec.2006.01.013
  • Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies, a review of recent literature. Progress in Polymer Science, 33, 399-447. https://doi:10.1016/j.progpolymsci.2007.11.001
  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl, 24, 1–39.
  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.
  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.
  • Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350–359. http://dx.doi.org/10.1016/j.biortech.2015.10.047
  • Al-Qodah, Z. (2000). Adsorption of dyes using shale oil ash. Water Research, 34(17), 4295-4303.
  • Lunhong, A., Haiyan, H., Zhonglan, C., Xing, W., & Jiang, J. (2010). Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chemical Engineering Journal, 156, 243-249. https://doi:10.1016/j.cej.2009.08.028
  • Azmier, A. M., & Rasyidah, A. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 171, 510-516. https://doi.org/10.1016/j.cej.2011.04.018
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Erbil Kavcı 0000-0001-6519-9901

Bünyamin Dönmez 0000-0002-7680-0755

Ali Çiçekçi 0000-0001-7890-602X

Ömer Laçin 0000-0002-5276-3056

Publication Date June 11, 2021
Submission Date July 1, 2020
Published in Issue Year 2021

Cite

APA Kavcı, E., Dönmez, B., Çiçekçi, A., Laçin, Ö. (2021). Malahit Yeşilinin Gideriminde Şeftali Çekirdeği Kabuğu: Karakterizasyon ve Kinetik İnceleme. Sinop Üniversitesi Fen Bilimleri Dergisi, 6(1), 9-20. https://doi.org/10.33484/sinopfbd.761068


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.