Research Article
BibTex RIS Cite

Cross Section Calculations of the Deuteron Induced Reactions on Uranium Isotopes

Year 2020, Volume: 5 Issue: 1, 55 - 63, 18.06.2020
https://doi.org/10.33484/sinopfbd.633832

Abstract

In this study, cross section of 235U(d,n)238Np, 235U(d,2n)235Np , 235U(d,3n)234Np , 238U(d,2n)238Np and 238U(d,4n)236Np reactions are calculated by using TALYS 1.6 computer code in the energy range from 5 to 35 MeV. In the calculations, 3 microscopic (level density model based on Goriely Skyrme HFB, Hilaire combinatorial level density model based on Skyrme HFB, level density model based on temperature dependent Gogny HFB) 3 macroscopic (back-shifted Fermi gas model, constant temperature model, generalized superfluid model) level density models are used as an optional inputs and their effects on the reaction cross section are investigated. Theoretical predictions are compared with the experimental data taken from EXFOR library.

References

  • [1] Harvey BR, Sutton GA, 1987. The properties of 235Np as a tracer and yield monitor in studies of the environmental behaviour of neptunium. Nuclear Instruments and Methods A, 254: 172-181.
  • [2] Morello M, Colle C, Bernard J, 1986. Less Common Methods, 122: 569.
  • [3] Wing J ve arkadaşları, 1959. Excitation functions of U 235 and U 238 bombarded with helium and deuterium ions. Physical Review 114: 163–173.
  • [4] Jackson JD, 1956. Canadian Journal of Physics, 34:767.
  • [5] Lessler RM, Gibson VM, Glass RA, 1966. Radiative capture, particle emission and fission in heavy nuclei. Nuclear Physics, 81: 401.
  • [6] Bellido LF, Rabinson VJ, Sims HE, 1993. Excitation functions for the U-235,238(d, xn)Np-237,240 reactions. Radiochimica Acta, 62: 123.
  • [7] Guzhovskii BY ve arkadaşları,1994. Cross-section activation measurement for U-238 through protons and deuterons in energy interval 10–14 MeV. International Conference of Nuclear Data Science and Technical, Gatlinburg, 390.
  • [8] Büyükuslu H ve arkadaşları, 2010. Theoretical cross sections of 209Bi, 232Th, 235U and 238U on deuteron-induced reactions. Annals and Nuclear Energy, 37: 534-539.
  • [9] Kaplan A ve arkadaşları, 2010. Excitation functions of some neutron production targets on (d,2n) reactions. Journal of Fusion Energy, 29: 181-187.
  • [10] Broeders CHM, Konobeyev AY, Korovin YA, Lunev VP, Blann M, 2006. Pre-compound and evaporation model code system for calculation of excitation functions energy and angular distributions of emitted particles in nuclear reactions at intermediate energies. ALICE/ASH FZK 7183, http://bibliothek.fzk.de/zb/berichte/FZKA7 183.pdf
  • [11] Yiğit M, Tel E, 2014. Nuclear model calculation for production of 18F, 22Na, 44, 46Sc, 54Mn, 64Cu, 68Ga, 76Br and 90Y radionuclides used in medical applications. Annals of Nuclear Energy, 69: 44-50.
  • [12] Yiğit M, Tel E, Kara A, 2013. Deuteron Induced (d, p) and (d, 2p) Nuclear Reactions up to 50 MeV. Journal Of Fusion Energy, 32(3): 362-370.
  • [13] Yiğit M, Tel E, 2017. Theoretical determination of (d, n) and (d, 2n) excitation functions of some structural fusion materials irradiated by deuterons. Nuclear Science and Techniques, 28(11): 165.
  • [14] Bethe HA, 1937. Nuclear Physics B. Nuclear Dynamics, Theoretical. Review of Modern Physics, 9: 69.
  • [15] Gilbert A, Cameron AG, 1965. A composite nuclear level density formula with shell corrections. Canadian Journal of Physics, 43(8): 1446-1496.
  • [16] Ignatyuk AV, Istekov KK, Smirenkin GN, 1979. Role of collective effects in systematics of level density of nuclei (No.KFK-TR--632). Kernforschungszentrum Karlsruhe GmbH Germany.
  • [17] Ignatyuk AV, Weil JL, Raman S, Kahane S, 1993. Density of discrete levels in Sn 116. Physical Review C, 47(4): 1504.
  • [18] Goriely S, Tondeur F, Pearson JM, 2001. Atomic Data Nuclear Data Tables, 77: 311.
  • [19] Goriely S, Hilaire S, Koning AJ, 2008. Improvedmicroscopic nuclear level densities within the HFB pluscombinatorial method. Physical Review C, 78: 064307.
  • [20] Hilaire S, Girod M, Goriely S, Koning A, 2012. Temperature dependent combinatorial level densitieswith the D1M Gogny force. Physical Review C, 86: 064317.
  • [21] Koning AJ, Hilaire S, Duijvestijn M, 2008. C.TALYS-1.0. EDP Sciences, 211-214.

Döteron ile İndüklenmiş Uranyum İzotoplarının Tesir Kesiti Hesaplamaları

Year 2020, Volume: 5 Issue: 1, 55 - 63, 18.06.2020
https://doi.org/10.33484/sinopfbd.633832

Abstract

Bu çalışmada, 235U(d,n)238Np,
235U(d,2n)235Np , 235U(d,3n)234Np ,
238U(d,2n)238Np ve 238U(d,4n)236Np
reaksiyonlarının tesir kesitleri TALYS 1.6 bilgisayar programı kullanılarak
5-35 MeV enerji aralığında hesaplanmıştır. Hesaplamalarda 3 tanesi mikroskopik   (Skyrme HFB tabanlı seviye yoğunluğu modeli,
Skyrme HFB tabanlı kombinasyonel seviye yoğunluğu modeli ve sıcaklığa bağlı
Gogny HFB tabanlı seviye yoğunluğu modeli) 3 tanesi makroskopik
(geri-kaydırılmış Fermi gaz modeli, sabit sıcaklık modeli, genelleştirilmiş
süperakışkan model) seviye yoğunluğu modelleri opsiyonel birer girdi olarak
kullanılmış ve reaksiyon tesir kesiti üzerindeki etkisi incelenmiştir. Teorik
tahminler EXFOR veri tabanından alınan deneysel veriler ile
karşılaştırılmıştır.

References

  • [1] Harvey BR, Sutton GA, 1987. The properties of 235Np as a tracer and yield monitor in studies of the environmental behaviour of neptunium. Nuclear Instruments and Methods A, 254: 172-181.
  • [2] Morello M, Colle C, Bernard J, 1986. Less Common Methods, 122: 569.
  • [3] Wing J ve arkadaşları, 1959. Excitation functions of U 235 and U 238 bombarded with helium and deuterium ions. Physical Review 114: 163–173.
  • [4] Jackson JD, 1956. Canadian Journal of Physics, 34:767.
  • [5] Lessler RM, Gibson VM, Glass RA, 1966. Radiative capture, particle emission and fission in heavy nuclei. Nuclear Physics, 81: 401.
  • [6] Bellido LF, Rabinson VJ, Sims HE, 1993. Excitation functions for the U-235,238(d, xn)Np-237,240 reactions. Radiochimica Acta, 62: 123.
  • [7] Guzhovskii BY ve arkadaşları,1994. Cross-section activation measurement for U-238 through protons and deuterons in energy interval 10–14 MeV. International Conference of Nuclear Data Science and Technical, Gatlinburg, 390.
  • [8] Büyükuslu H ve arkadaşları, 2010. Theoretical cross sections of 209Bi, 232Th, 235U and 238U on deuteron-induced reactions. Annals and Nuclear Energy, 37: 534-539.
  • [9] Kaplan A ve arkadaşları, 2010. Excitation functions of some neutron production targets on (d,2n) reactions. Journal of Fusion Energy, 29: 181-187.
  • [10] Broeders CHM, Konobeyev AY, Korovin YA, Lunev VP, Blann M, 2006. Pre-compound and evaporation model code system for calculation of excitation functions energy and angular distributions of emitted particles in nuclear reactions at intermediate energies. ALICE/ASH FZK 7183, http://bibliothek.fzk.de/zb/berichte/FZKA7 183.pdf
  • [11] Yiğit M, Tel E, 2014. Nuclear model calculation for production of 18F, 22Na, 44, 46Sc, 54Mn, 64Cu, 68Ga, 76Br and 90Y radionuclides used in medical applications. Annals of Nuclear Energy, 69: 44-50.
  • [12] Yiğit M, Tel E, Kara A, 2013. Deuteron Induced (d, p) and (d, 2p) Nuclear Reactions up to 50 MeV. Journal Of Fusion Energy, 32(3): 362-370.
  • [13] Yiğit M, Tel E, 2017. Theoretical determination of (d, n) and (d, 2n) excitation functions of some structural fusion materials irradiated by deuterons. Nuclear Science and Techniques, 28(11): 165.
  • [14] Bethe HA, 1937. Nuclear Physics B. Nuclear Dynamics, Theoretical. Review of Modern Physics, 9: 69.
  • [15] Gilbert A, Cameron AG, 1965. A composite nuclear level density formula with shell corrections. Canadian Journal of Physics, 43(8): 1446-1496.
  • [16] Ignatyuk AV, Istekov KK, Smirenkin GN, 1979. Role of collective effects in systematics of level density of nuclei (No.KFK-TR--632). Kernforschungszentrum Karlsruhe GmbH Germany.
  • [17] Ignatyuk AV, Weil JL, Raman S, Kahane S, 1993. Density of discrete levels in Sn 116. Physical Review C, 47(4): 1504.
  • [18] Goriely S, Tondeur F, Pearson JM, 2001. Atomic Data Nuclear Data Tables, 77: 311.
  • [19] Goriely S, Hilaire S, Koning AJ, 2008. Improvedmicroscopic nuclear level densities within the HFB pluscombinatorial method. Physical Review C, 78: 064307.
  • [20] Hilaire S, Girod M, Goriely S, Koning A, 2012. Temperature dependent combinatorial level densitieswith the D1M Gogny force. Physical Review C, 86: 064317.
  • [21] Koning AJ, Hilaire S, Duijvestijn M, 2008. C.TALYS-1.0. EDP Sciences, 211-214.
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Deniz Canbula 0000-0003-0283-2698

Publication Date June 18, 2020
Submission Date October 16, 2019
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

APA Canbula, D. (2020). Döteron ile İndüklenmiş Uranyum İzotoplarının Tesir Kesiti Hesaplamaları. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(1), 55-63. https://doi.org/10.33484/sinopfbd.633832


Articles published in Sinopjns are licensed under CC BY-NC 4.0.