Biriktirme Sıcaklığının İtriyum Katkılı Zirkonya İnce Filmlerin Yapısal, Morfolojik ve Dielektrik Özelliklerine Etkisi
Year 2024,
Volume: 9 Issue: 1, 44 - 60, 29.06.2024
Şerif Rüzgar
,
Veysel Eratilla
Abstract
Bu çalışmanın amacı, sol-gel spin-kaplama yöntemiyle hazırlanan itriya ile stabilize edilmiş zirkonya (YSZ) filmlerin yapısal, optik, morfolojik ve dielektrik özelliklerine biriktirme sıcaklığının etkisini araştırmaktır. YSZ filmlerinin X-ışını kırınımı (XRD) ölçümleri, kübik fazın tepe noktalarının belirgin olduğunu ve tepe yoğunluklarının biriktirme sıcaklığıyla birlikte arttığını gösterdi. İnce filmlerin kristalit boyutu, dislokasyon yoğunluğu ve mikro gerilimi XRD ile belirlendi. YSZ ince filmlerinin kristal boyutunun biriktirme sıcaklığıyla birlikte 16 nm'den 22 nm'ye arttığı gözlendi. Atomik Kuvvet Mikroskobu (AFM) ölçümleri sonucunda ince filmlerin yüzey pürüzlülüğünün değiştiği tespit edildi. Artan sıcaklıkla pürüzlülük 7.72 nm'den 11.92 nm'ye yükseldi. YSZ ince filmlerinin optik geçirgenliği 200-900 nm dalga boyu aralığında araştırılmış ve artan biriktirme sıcaklığıyla birlikte hafifçe arttığı bulunmuştur. Dielektrik karakterizasyonu için bu YSZ malzemelerinden Metal Oksit-Yarı İletken (MOS) cihazlar üretildi. Ag/YSZ/n-Si MOS yapısının dielektrik özellikleri araştırıldı. Bu yapıların kapasitans, iletkenlik ve diğer dielektrik parametrelerinin güçlü bir şekilde frekansa bağlı olduğu bulunmuştur.
Project Number
BTUBAP-2019-SHMYO-01
Thanks
We would like to thank Dr. Canan Aytug Ava for her contribution to the acquisition of AFM images.
References
- Piconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials, 20(1), 1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
- Sprio, S., Guicciardi, S., Bellosi, A., & Pezzotti, G. (2006). Yttria-stabilized zirconia films grown by radiofrequency magnetron sputtering: Structure, properties and residual stresses. Surface and Coatings Technology, 200(14), 4579-4585. https://doi.org/10.1016/j.surfcoat.2005.04.003
- Kumar, D., Singh, A., Saini, B. S., Choudhary, B. C., Shinde, V., & Kaur, R. (2021). Effect of Ni doping on the structural and optical properties of ZrO2 thin films. Journal of Electronic Materials, 50(1), 65-74. https://doi.org/10.1007/s11664-020-08558-0
- Kandpal, K., Gupta, N., Singh, J., & Shekhar, C. (2020). On the threshold voltage and performance of ZnO-based thin-film transistors with a ZrO2 gate dielectric. Journal of Electronic Materials, 49(5), 3156-3164. https://doi.org/10.1007/s11664-020-08055-4
- Van, H. N., Van Huan, P., Nguyen, D.-H., Vu, N. H., & Pham, V.-H. (2019). Up/down-conversion luminescence of Er3+ doped ZrO2·Al2O3 powder. Journal of Electronic Materials, 48(12), 8054-8060. https://doi.org/10.1007/s11664-019-07644-2
- Kumar, D., Singh, A., Kaur, N., Thakur, A., & Kaur, R. (2020). Tailoring structural and optical properties of ZrO2 with nickel doping. SN Applied Sciences, 2(4), 644. https://doi.org/10.1007/s42452-020-2491-z
- Chevalier, J. (2006). What future for zirconia as a biomaterial? Biomaterials, 27(4), 535-543. https://doi.org/10.1016/j.biomaterials.2005.07.034
- Chen, L. B. (2006). Yttria-stabilized zirconia thermal barrier coatings-A review. Surface Review and Letters, 13(05), 535-544. https://doi.org/10.1142/S0218625X06008670
- Guo, X., Vasco, E., Mi, S., Szot, K., Wachsman, E., & Waser, R. (2005). Ionic conduction in zirconia films of nanometer thickness. Acta Materialia, 53(19), 5161-5166. https://doi.org/10.1016/j.actamat.2005.07.033
- Flinn, B. D., deGroot, D. A., Mancl, L. A., & Raigrodski, A. J. (2012). Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. The Journal of Prosthetic Dentistry, 108(4), 223-230. https://doi.org/10.1016/S0022-3913(12)60166-8
- Cano, F. J., Castilleja-Escobedo, O., Espinoza-Pérez, L. J., Reynosa-Martínez, C., & Lopez-Honorato, E. (2021). Effect of deposition conditions on phase content and mechanical properties of yttria-stabilized zirconia thin films deposited by sol-gel/dip-coating. Journal of Nanomaterials, e4449890. https://doi.org/10.1155/2021/4449890
- Guven, S., Beydemir, K., Dundar, S., & Eratilla, V. (2015). Evaluation of stress distributions in peri-implant and periodontal bone tissues in 3- and 5-unit tooth and implant-supported fixed zirconia restorations by finite elements analysis. European Journal of Dentistry, 9(3), 329-339. https://doi.org/10.4103/1305-7456.163223
- Eratilla, V., Yildiz, A. D., Guven, S., Eratilla, E. A., Karaman, T., Aguloglu, S., & Sumer, E. (2016). Measuring the resistance of different substructure materials by sticking them to dentine with two different resin cements in vitro. Nigerian Journal of Clinical Practice, 19(6). https://doi.org/10.4314/njcp.v19i6
- Zscherp, M. F., Glaser, J., Becker, C., Beyer, A., Cop, P., Schörmann, J., Volz, K., & Elm, M. T. (2020). Epitaxial growth and structural characterization of ceria deposited by atomic layer deposition on high-surface porous yttria-stabilized zirconia thin films. Crystal Growth & Design, 20(4), 2194-2201. https://doi.org/10.1021/acs.cgd.9b01112
- Liu, C.-F., Tang, X.-G., Guo, X.-B., Liu, Q.-X., Jiang, Y.-P., Tang, Z.-H., & Li, W.-H. (2020). Photodiode characteristics of HfO2 thin films prepared by magnetron sputtering. Materials & Design, 188, 108465. https://doi.org/10.1016/j.matdes.2019.108465
- Liu, C. W., Liu, W. T., Lee, M. H., Kuo, W. S., & Hsu, B. C. (2000). A novel photodetector using MOS tunneling structures. IEEE Electron Device Letters, 21(6), 307-309. https://doi.org/10.1109/55.843159
- Çokduygulular, E., Çetinkaya, Ç., Yalçın, Y., & Kınacı, B. (2020). A comprehensive study on Cu-doped ZnO (CZO) interlayered MOS structure. Journal of Materials Science: Materials in Electronics, 31(16), 13646-13656. https://doi.org/10.1007/s10854-020-03922-6
- Jang, D. Y., Kim, H. K., Kim, J. W., Bae, K., Schlupp, M. V. F., Park, S. W., Prestat, M., & Shim, J. H. (2015). Low-temperature performance of yttria-stabilized zirconia prepared by atomic layer deposition. Journal of Power Sources, 274, 611-618. https://doi.org/10.1016/j.jpowsour.2014.10.022
- Ouyang, Z., Meng, L., Raman, P., Cho, T. S., & Ruzic, D. N. (2011). Laser-assisted plasma coating at atmospheric pressure: Production of yttria-stabilized zirconia thermal barriers. Journal of Physics D: Applied Physics, 44(26), 265202. https://doi.org/10.1088/0022-3727/44/26/265202
- Sønderby, S., Aijaz, A., Helmersson, U., Sarakinos, K., & Eklund, P. (2014). Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering. Surface and Coatings Technology, 240, 1-6. https://doi.org/10.1016/j.surfcoat.2013.12.001
- Schlupp, M. V. F., Prestat, M., Martynczuk, J., Rupp, J. L. M., Bieberle-Hütter, A., & Gauckler, L. J. (2012). Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. Journal of Power Sources, 202, 47-55. https://doi.org/10.1016/j.jpowsour.2011.11.016
- Díaz-Parralejo, A., Macías-García, A., Sánchez-González, J., Díaz-Díez, M. Á., & Cuerda-Correa, E. M. (2011). A novel strategy for the preparation of yttria-stabilized zirconia powders: Deposition and scratching of thin films obtained by the sol–gel method. Journal of Non-Crystalline Solids, 357(3), 1090-1095. https://doi.org/10.1016/j.jnoncrysol.2010.10.025
- Courtin, E., Boy, P., Rouhet, C., Bianchi, L., Bruneton, E., Poirot, N., Laberty-Robert, C., & Sanchez, C. (2012). Optimized sol–gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chemistry of Materials, 24(23), 4540-4548. https://doi.org/10.1021/cm302177s
- Pakma, O., Özdemir, C., Kariper, İ. A., Özaydın, C., & Güllü, Ö. (2016). Wet chemical methods for producing mixing crystalline phase ZrO2 thin film. Applied Surface Science, 377, 159-166. https://doi.org/10.1016/j.apsusc.2016.03.107
- Mathew Simon, S., George, G., M s, S., V p, P., Anna Jose, T., Vasudevan, P., Saritha, A. C., Biju, P. R., Joseph, C., & Unnikrishnan, N. V. (2021). Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Applied Surface Science Advances, 6, 100173. https://doi.org/10.1016/j.apsadv.2021.100173
- Shao, Z., Zhou, W., & Zhu, Z. (2012). Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science, 57(4), 804-874. https://doi.org/10.1016/j.pmatsci.2011.08.002
- Waghmare, M., Sonone, P., Patil, P., Kadam, V., Pathan, H., & Ubale, A. (2018). Spray pyrolytic deposition of zirconium oxide thin films: influence of concentration on structural and optical properties. Engineered Science, 5(2), 79-87.
- Rusli, N. A., Muhammad, R., Ghoshal, S. K., Nur, H., & Nayan, N. (2020). Annealing temperature induced improved crystallinity of YSZ thin film. Materials Research Express, 7(5), 056406. https://doi.org/10.1088/2053-1591/ab9039
- Ramos-Guerra, A. I., Guzmán-Mendoza, J., García-Hipólito, M., Alvarez-Fregoso, O., & Falcony, C. (2015). Multicolored photoluminescence and structural properties of zirconium oxide films co-doped with Tb3+ and Eu3+ ions. Ceramics International, 41(9, Part A), 11279-11286. https://doi.org/10.1016/j.ceramint.2015.05.084
- Malek, M. F., Mamat, M. H., Musa, M. Z., Khusaimi, Z., Sahdan, M. Z., Suriani, A. B., Ishak, A., Saurdi, I., Rahman, S. A., & Rusop, M. (2014). Thermal annealing-induced formation of ZnO nanoparticles: Minimum strain and stress ameliorate preferred c-axis orientation and crystal-growth properties. Journal of Alloys and Compounds, 610, 575-588. https://doi.org/10.1016/j.jallcom.2014.05.036
- Aksoy, S., & Caglar, Y. (2014). Structural transformations of TiO2 films with deposition temperature and electrical properties of nanostructure n-TiO2/p-Si heterojunction diode. Journal of Alloys and Compounds, 613, 330-337. https://doi.org/10.1016/j.jallcom.2014.05.192
- Hu, S. Y., Lee, Y. C., Lee, J. W., Huang, J. C., Shen, J. L., & Water, W. (2008). The structural and optical properties of ZnO/Si thin films by RTA treatments. Applied Surface Science, 254(6), 1578-1582. https://doi.org/10.1016/j.apsusc.2007.07.134
- Heiroth, S., Frison, R., Rupp, J. L. M., Lippert, T., Barthazy Meier, E. J., Müller Gubler, E., Döbeli, M., Conder, K., Wokaun, A., & Gauckler, L. J. (2011). Crystallization and grain growth characteristics of yttria-stabilized zirconia thin films grown by pulsed laser deposition. Solid State Ionics, 191(1), 12-23. https://doi.org/10.1016/j.ssi.2011.04.002
- Cai, H., Tuokedaerhan, K., Lu, Z., Zhang, R., & Du, H. (2022). Effect of annealing temperature on the structural, optical, and electrical properties of al-doped ZrO2 gate dielectric films treated by the sol–gel method. Coatings, 12(12). https://doi.org/10.3390/coatings12121837
- Fan, C., Liu, A., Meng, Y., Guo, Z., Liu, G., & Shan, F. (2017). Solution-processed SrOx-gated oxide thin-film transistors and inverters. IEEE Transactions on Electron Devices, 64(10), 4137-4143. https://doi.org/10.1109/TED.2017.2742060
- Tilli, M., Paulasto-Krockel, M., Motooka, T., Lindroos, V., Airaksinen, V.-M., Franssila, S., & Lehto, A. (2009). Handbook of Silicon Based MEMS Materials and Technologies. Elsevier.
- Wang, C. (2021). Effect of annealing temperature on the structure and optical properties of Mn doped ZnS thin films. Journal of Modern Optics, 68(14), 771-775. https://doi.org/10.1080/09500340.2021.1946183
- Li, J., Yang, W., Su, J., & Yang, C. (2018). Effects of deposition temperature on structural, optical properties and laser damage of laTiO3 thin films. Advances in Condensed Matter Physics, e7328429. https://doi.org/10.1155/2018/7328429
- Hojabri, A. (2016). Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates. Journal of Theoretical and Applied Physics, 10(3), 219-224. https://doi.org/10.1007/s40094-016-0218-8
- Bakacak, P. K., Gur, E., Bayram, O., Tuzemen, S., & Simsek, O. (2021). Photoluminescence and structural properties of zirconium dioxide thin films produced by RF sputtering technique. Journal of Materials Science: Materials in Electronics, 32(6), 7541-7549. https://doi.org/10.1007/s10854-021-05468-7
- Satoh, N., Nakashima, T., Kamikura, K., & Yamamoto, K. (2008). Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nature Nanotechnology, 3(2). https://doi.org/10.1038/nnano.2008.2
- Gu, P., Zhu, X., & Yang, D. (2019). Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Applied Physics A, 125(1), 50. https://doi.org/10.1007/s00339-018-2361-3
- Murarka, S. P., Eizenberg, M., & Sinha, A. K. (2003). Interlayer Dielectrics for Semiconductor Technologies. Elsevier.
- Özdemı̇r, M. C., Sevgı̇lı̇, Ö., Orak, İ., & Türüt, A. (2020). Arayüzey doğal oksit tabakalı Al/p-Si/Al yapıların dielektrik karakteristiklerine ölçüm frekansının etkileri. Journal of the Institute of Science and Technology, 10(1). https://doi.org/10.21597/jist.612518
- Yıldız, D. E., & Dökme, İ. (2011). Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al∕SiO2∕p-Si metal-insulator-semiconductor Schottky diodes. Journal of Applied Physics, 110(1), 014507-014507-5. https://doi.org/10.1063/1.3602090
- Cavdar, S., Demirolmez, Y., Turan, N., Koralay, H., & Tuğluoğlu, N. (2022). Analysis of voltage and frequency-dependent series resistance and interface states of Al/ZnCo2O4: Gelatin/n-Si diode. Journal of Materials Science: Materials in Electronics, 33(29), 22932-22940. https://doi.org/10.1007/s10854-022-09063-2
- Lok, R., Budak, E., & Yilmaz, E. (2020). Structural characterization and electrical properties of Nd2O3 by sol–gel method. Journal of Materials Science: Materials in Electronics, 31(4), 3111-3118. https://doi.org/10.1007/s10854-020-02857-2
- Elgazzar, E., Tataroğlu, A., Al-Ghamdi, A. A., Al-Turki, Y., Farooq, W. A., El-Tantawy, F., & Yakuphanoglu, F. (2016). Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements. Applied Physics A, 122(6), 617. https://doi.org/10.1007/s00339-016-0148-y
- Gullu, H. H., Yildiz, D. E., Surucu, O., & Parlak, M. (2020). Frequency effect on electrical and dielectric characteristics of HfO2-interlayered Si-based Schottky barrier diode. Journal of Materials Science: Materials in Electronics, 31(12), 9394-9407. https://doi.org/10.1007/s10854-020-03479-4
- Pirgholi-Givi, G., Altındal, Ş., Shahedi Asl, M., Sabahi Namini, A., Farazin, J., & Azizian-Kalandaragh, Y. (2021). The effect of cadmium impurities in the (PVP–TeO2) interlayer in Al/p-Si (MS) Schottky barrier diodes (SBDs): Exploring its electrophysical parameters. Physica B: Condensed Matter, 604, 412617. https://doi.org/10.1016/j.physb.2020.412617
- Sebastian, M. T. (2010). Dielectric Materials for Wireless Communication. Elsevier.
- Mehraj, S., Ansari, M. S., & Alimuddin. (2015). Annealed SnO2 thin films: Structural, electrical and their magnetic properties. Thin Solid Films, 589, 57-65. https://doi.org/10.1016/j.tsf.2015.04.065
- Rezlescu, N., & Rezlescu, E. (1974). Dielectric properties of copper containing ferrites. Physica Status Solidi (a), 23(2), 575-582. https://doi.org/10.1002/pssa.2210230229
- Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), R57. https://doi.org/10.1088/0022-3727/32/14/201
- Shukla, N., & Dwivedi, D. K. (2016). Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys. Journal of Asian Ceramic Societies, 4(2), 178-184. https://doi.org/10.1016/j.jascer.2016.02.003
The Effect of Deposition Temperature on Structural, Morphological, and Dielectric Properties of Yttria-Doped Zirconia Thin Films
Year 2024,
Volume: 9 Issue: 1, 44 - 60, 29.06.2024
Şerif Rüzgar
,
Veysel Eratilla
Abstract
The aim of this study was to investigate the effect of deposition temperature on the structural, optical, morphological, and dielectric properties of yttria-stabilised zirconia (YSZ) films prepared by sol-gel spin-coating method. X-ray diffraction (XRD) measurements of YSZ films showed that the peaks of the cubic phase were prominent and the peak intensities increased with deposition temperature. The crystallite size, dislocation density, and microstrain of the thin films were identified by XRD. It was observed that the crystal size of the YSZ thin films increased from 16 nm to 22 nm with the deposition temperature. The surface roughness of the thin films was found to have changed as revealed by Atomic Force Microscopy (AFM) measurements. The roughness increased from 7.72 nm to 11.92 nm with increasing temperature. The optical transmittance of the YSZ thin films was investigated in the wavelength range 200-900 nm and was found to increase slightly with increasing deposition temperature. Metal-Oxide-Semiconductor (MOS) devices were fabricated from these YSZ materials for dielectric characterization. The dielectric properties of the Ag/YSZ/n-Si MOS structure were investigated. It was found that the capacitance, conductivity and other dielectric parameters of these structures are strongly frequency dependent.
Project Number
BTUBAP-2019-SHMYO-01
References
- Piconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials, 20(1), 1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
- Sprio, S., Guicciardi, S., Bellosi, A., & Pezzotti, G. (2006). Yttria-stabilized zirconia films grown by radiofrequency magnetron sputtering: Structure, properties and residual stresses. Surface and Coatings Technology, 200(14), 4579-4585. https://doi.org/10.1016/j.surfcoat.2005.04.003
- Kumar, D., Singh, A., Saini, B. S., Choudhary, B. C., Shinde, V., & Kaur, R. (2021). Effect of Ni doping on the structural and optical properties of ZrO2 thin films. Journal of Electronic Materials, 50(1), 65-74. https://doi.org/10.1007/s11664-020-08558-0
- Kandpal, K., Gupta, N., Singh, J., & Shekhar, C. (2020). On the threshold voltage and performance of ZnO-based thin-film transistors with a ZrO2 gate dielectric. Journal of Electronic Materials, 49(5), 3156-3164. https://doi.org/10.1007/s11664-020-08055-4
- Van, H. N., Van Huan, P., Nguyen, D.-H., Vu, N. H., & Pham, V.-H. (2019). Up/down-conversion luminescence of Er3+ doped ZrO2·Al2O3 powder. Journal of Electronic Materials, 48(12), 8054-8060. https://doi.org/10.1007/s11664-019-07644-2
- Kumar, D., Singh, A., Kaur, N., Thakur, A., & Kaur, R. (2020). Tailoring structural and optical properties of ZrO2 with nickel doping. SN Applied Sciences, 2(4), 644. https://doi.org/10.1007/s42452-020-2491-z
- Chevalier, J. (2006). What future for zirconia as a biomaterial? Biomaterials, 27(4), 535-543. https://doi.org/10.1016/j.biomaterials.2005.07.034
- Chen, L. B. (2006). Yttria-stabilized zirconia thermal barrier coatings-A review. Surface Review and Letters, 13(05), 535-544. https://doi.org/10.1142/S0218625X06008670
- Guo, X., Vasco, E., Mi, S., Szot, K., Wachsman, E., & Waser, R. (2005). Ionic conduction in zirconia films of nanometer thickness. Acta Materialia, 53(19), 5161-5166. https://doi.org/10.1016/j.actamat.2005.07.033
- Flinn, B. D., deGroot, D. A., Mancl, L. A., & Raigrodski, A. J. (2012). Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. The Journal of Prosthetic Dentistry, 108(4), 223-230. https://doi.org/10.1016/S0022-3913(12)60166-8
- Cano, F. J., Castilleja-Escobedo, O., Espinoza-Pérez, L. J., Reynosa-Martínez, C., & Lopez-Honorato, E. (2021). Effect of deposition conditions on phase content and mechanical properties of yttria-stabilized zirconia thin films deposited by sol-gel/dip-coating. Journal of Nanomaterials, e4449890. https://doi.org/10.1155/2021/4449890
- Guven, S., Beydemir, K., Dundar, S., & Eratilla, V. (2015). Evaluation of stress distributions in peri-implant and periodontal bone tissues in 3- and 5-unit tooth and implant-supported fixed zirconia restorations by finite elements analysis. European Journal of Dentistry, 9(3), 329-339. https://doi.org/10.4103/1305-7456.163223
- Eratilla, V., Yildiz, A. D., Guven, S., Eratilla, E. A., Karaman, T., Aguloglu, S., & Sumer, E. (2016). Measuring the resistance of different substructure materials by sticking them to dentine with two different resin cements in vitro. Nigerian Journal of Clinical Practice, 19(6). https://doi.org/10.4314/njcp.v19i6
- Zscherp, M. F., Glaser, J., Becker, C., Beyer, A., Cop, P., Schörmann, J., Volz, K., & Elm, M. T. (2020). Epitaxial growth and structural characterization of ceria deposited by atomic layer deposition on high-surface porous yttria-stabilized zirconia thin films. Crystal Growth & Design, 20(4), 2194-2201. https://doi.org/10.1021/acs.cgd.9b01112
- Liu, C.-F., Tang, X.-G., Guo, X.-B., Liu, Q.-X., Jiang, Y.-P., Tang, Z.-H., & Li, W.-H. (2020). Photodiode characteristics of HfO2 thin films prepared by magnetron sputtering. Materials & Design, 188, 108465. https://doi.org/10.1016/j.matdes.2019.108465
- Liu, C. W., Liu, W. T., Lee, M. H., Kuo, W. S., & Hsu, B. C. (2000). A novel photodetector using MOS tunneling structures. IEEE Electron Device Letters, 21(6), 307-309. https://doi.org/10.1109/55.843159
- Çokduygulular, E., Çetinkaya, Ç., Yalçın, Y., & Kınacı, B. (2020). A comprehensive study on Cu-doped ZnO (CZO) interlayered MOS structure. Journal of Materials Science: Materials in Electronics, 31(16), 13646-13656. https://doi.org/10.1007/s10854-020-03922-6
- Jang, D. Y., Kim, H. K., Kim, J. W., Bae, K., Schlupp, M. V. F., Park, S. W., Prestat, M., & Shim, J. H. (2015). Low-temperature performance of yttria-stabilized zirconia prepared by atomic layer deposition. Journal of Power Sources, 274, 611-618. https://doi.org/10.1016/j.jpowsour.2014.10.022
- Ouyang, Z., Meng, L., Raman, P., Cho, T. S., & Ruzic, D. N. (2011). Laser-assisted plasma coating at atmospheric pressure: Production of yttria-stabilized zirconia thermal barriers. Journal of Physics D: Applied Physics, 44(26), 265202. https://doi.org/10.1088/0022-3727/44/26/265202
- Sønderby, S., Aijaz, A., Helmersson, U., Sarakinos, K., & Eklund, P. (2014). Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering. Surface and Coatings Technology, 240, 1-6. https://doi.org/10.1016/j.surfcoat.2013.12.001
- Schlupp, M. V. F., Prestat, M., Martynczuk, J., Rupp, J. L. M., Bieberle-Hütter, A., & Gauckler, L. J. (2012). Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. Journal of Power Sources, 202, 47-55. https://doi.org/10.1016/j.jpowsour.2011.11.016
- Díaz-Parralejo, A., Macías-García, A., Sánchez-González, J., Díaz-Díez, M. Á., & Cuerda-Correa, E. M. (2011). A novel strategy for the preparation of yttria-stabilized zirconia powders: Deposition and scratching of thin films obtained by the sol–gel method. Journal of Non-Crystalline Solids, 357(3), 1090-1095. https://doi.org/10.1016/j.jnoncrysol.2010.10.025
- Courtin, E., Boy, P., Rouhet, C., Bianchi, L., Bruneton, E., Poirot, N., Laberty-Robert, C., & Sanchez, C. (2012). Optimized sol–gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chemistry of Materials, 24(23), 4540-4548. https://doi.org/10.1021/cm302177s
- Pakma, O., Özdemir, C., Kariper, İ. A., Özaydın, C., & Güllü, Ö. (2016). Wet chemical methods for producing mixing crystalline phase ZrO2 thin film. Applied Surface Science, 377, 159-166. https://doi.org/10.1016/j.apsusc.2016.03.107
- Mathew Simon, S., George, G., M s, S., V p, P., Anna Jose, T., Vasudevan, P., Saritha, A. C., Biju, P. R., Joseph, C., & Unnikrishnan, N. V. (2021). Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Applied Surface Science Advances, 6, 100173. https://doi.org/10.1016/j.apsadv.2021.100173
- Shao, Z., Zhou, W., & Zhu, Z. (2012). Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science, 57(4), 804-874. https://doi.org/10.1016/j.pmatsci.2011.08.002
- Waghmare, M., Sonone, P., Patil, P., Kadam, V., Pathan, H., & Ubale, A. (2018). Spray pyrolytic deposition of zirconium oxide thin films: influence of concentration on structural and optical properties. Engineered Science, 5(2), 79-87.
- Rusli, N. A., Muhammad, R., Ghoshal, S. K., Nur, H., & Nayan, N. (2020). Annealing temperature induced improved crystallinity of YSZ thin film. Materials Research Express, 7(5), 056406. https://doi.org/10.1088/2053-1591/ab9039
- Ramos-Guerra, A. I., Guzmán-Mendoza, J., García-Hipólito, M., Alvarez-Fregoso, O., & Falcony, C. (2015). Multicolored photoluminescence and structural properties of zirconium oxide films co-doped with Tb3+ and Eu3+ ions. Ceramics International, 41(9, Part A), 11279-11286. https://doi.org/10.1016/j.ceramint.2015.05.084
- Malek, M. F., Mamat, M. H., Musa, M. Z., Khusaimi, Z., Sahdan, M. Z., Suriani, A. B., Ishak, A., Saurdi, I., Rahman, S. A., & Rusop, M. (2014). Thermal annealing-induced formation of ZnO nanoparticles: Minimum strain and stress ameliorate preferred c-axis orientation and crystal-growth properties. Journal of Alloys and Compounds, 610, 575-588. https://doi.org/10.1016/j.jallcom.2014.05.036
- Aksoy, S., & Caglar, Y. (2014). Structural transformations of TiO2 films with deposition temperature and electrical properties of nanostructure n-TiO2/p-Si heterojunction diode. Journal of Alloys and Compounds, 613, 330-337. https://doi.org/10.1016/j.jallcom.2014.05.192
- Hu, S. Y., Lee, Y. C., Lee, J. W., Huang, J. C., Shen, J. L., & Water, W. (2008). The structural and optical properties of ZnO/Si thin films by RTA treatments. Applied Surface Science, 254(6), 1578-1582. https://doi.org/10.1016/j.apsusc.2007.07.134
- Heiroth, S., Frison, R., Rupp, J. L. M., Lippert, T., Barthazy Meier, E. J., Müller Gubler, E., Döbeli, M., Conder, K., Wokaun, A., & Gauckler, L. J. (2011). Crystallization and grain growth characteristics of yttria-stabilized zirconia thin films grown by pulsed laser deposition. Solid State Ionics, 191(1), 12-23. https://doi.org/10.1016/j.ssi.2011.04.002
- Cai, H., Tuokedaerhan, K., Lu, Z., Zhang, R., & Du, H. (2022). Effect of annealing temperature on the structural, optical, and electrical properties of al-doped ZrO2 gate dielectric films treated by the sol–gel method. Coatings, 12(12). https://doi.org/10.3390/coatings12121837
- Fan, C., Liu, A., Meng, Y., Guo, Z., Liu, G., & Shan, F. (2017). Solution-processed SrOx-gated oxide thin-film transistors and inverters. IEEE Transactions on Electron Devices, 64(10), 4137-4143. https://doi.org/10.1109/TED.2017.2742060
- Tilli, M., Paulasto-Krockel, M., Motooka, T., Lindroos, V., Airaksinen, V.-M., Franssila, S., & Lehto, A. (2009). Handbook of Silicon Based MEMS Materials and Technologies. Elsevier.
- Wang, C. (2021). Effect of annealing temperature on the structure and optical properties of Mn doped ZnS thin films. Journal of Modern Optics, 68(14), 771-775. https://doi.org/10.1080/09500340.2021.1946183
- Li, J., Yang, W., Su, J., & Yang, C. (2018). Effects of deposition temperature on structural, optical properties and laser damage of laTiO3 thin films. Advances in Condensed Matter Physics, e7328429. https://doi.org/10.1155/2018/7328429
- Hojabri, A. (2016). Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates. Journal of Theoretical and Applied Physics, 10(3), 219-224. https://doi.org/10.1007/s40094-016-0218-8
- Bakacak, P. K., Gur, E., Bayram, O., Tuzemen, S., & Simsek, O. (2021). Photoluminescence and structural properties of zirconium dioxide thin films produced by RF sputtering technique. Journal of Materials Science: Materials in Electronics, 32(6), 7541-7549. https://doi.org/10.1007/s10854-021-05468-7
- Satoh, N., Nakashima, T., Kamikura, K., & Yamamoto, K. (2008). Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nature Nanotechnology, 3(2). https://doi.org/10.1038/nnano.2008.2
- Gu, P., Zhu, X., & Yang, D. (2019). Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Applied Physics A, 125(1), 50. https://doi.org/10.1007/s00339-018-2361-3
- Murarka, S. P., Eizenberg, M., & Sinha, A. K. (2003). Interlayer Dielectrics for Semiconductor Technologies. Elsevier.
- Özdemı̇r, M. C., Sevgı̇lı̇, Ö., Orak, İ., & Türüt, A. (2020). Arayüzey doğal oksit tabakalı Al/p-Si/Al yapıların dielektrik karakteristiklerine ölçüm frekansının etkileri. Journal of the Institute of Science and Technology, 10(1). https://doi.org/10.21597/jist.612518
- Yıldız, D. E., & Dökme, İ. (2011). Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al∕SiO2∕p-Si metal-insulator-semiconductor Schottky diodes. Journal of Applied Physics, 110(1), 014507-014507-5. https://doi.org/10.1063/1.3602090
- Cavdar, S., Demirolmez, Y., Turan, N., Koralay, H., & Tuğluoğlu, N. (2022). Analysis of voltage and frequency-dependent series resistance and interface states of Al/ZnCo2O4: Gelatin/n-Si diode. Journal of Materials Science: Materials in Electronics, 33(29), 22932-22940. https://doi.org/10.1007/s10854-022-09063-2
- Lok, R., Budak, E., & Yilmaz, E. (2020). Structural characterization and electrical properties of Nd2O3 by sol–gel method. Journal of Materials Science: Materials in Electronics, 31(4), 3111-3118. https://doi.org/10.1007/s10854-020-02857-2
- Elgazzar, E., Tataroğlu, A., Al-Ghamdi, A. A., Al-Turki, Y., Farooq, W. A., El-Tantawy, F., & Yakuphanoglu, F. (2016). Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements. Applied Physics A, 122(6), 617. https://doi.org/10.1007/s00339-016-0148-y
- Gullu, H. H., Yildiz, D. E., Surucu, O., & Parlak, M. (2020). Frequency effect on electrical and dielectric characteristics of HfO2-interlayered Si-based Schottky barrier diode. Journal of Materials Science: Materials in Electronics, 31(12), 9394-9407. https://doi.org/10.1007/s10854-020-03479-4
- Pirgholi-Givi, G., Altındal, Ş., Shahedi Asl, M., Sabahi Namini, A., Farazin, J., & Azizian-Kalandaragh, Y. (2021). The effect of cadmium impurities in the (PVP–TeO2) interlayer in Al/p-Si (MS) Schottky barrier diodes (SBDs): Exploring its electrophysical parameters. Physica B: Condensed Matter, 604, 412617. https://doi.org/10.1016/j.physb.2020.412617
- Sebastian, M. T. (2010). Dielectric Materials for Wireless Communication. Elsevier.
- Mehraj, S., Ansari, M. S., & Alimuddin. (2015). Annealed SnO2 thin films: Structural, electrical and their magnetic properties. Thin Solid Films, 589, 57-65. https://doi.org/10.1016/j.tsf.2015.04.065
- Rezlescu, N., & Rezlescu, E. (1974). Dielectric properties of copper containing ferrites. Physica Status Solidi (a), 23(2), 575-582. https://doi.org/10.1002/pssa.2210230229
- Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), R57. https://doi.org/10.1088/0022-3727/32/14/201
- Shukla, N., & Dwivedi, D. K. (2016). Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys. Journal of Asian Ceramic Societies, 4(2), 178-184. https://doi.org/10.1016/j.jascer.2016.02.003