Determination of DNA Binding Activities of Naphthalimide Derivatives Containing Side Groups with Different Inductive Effects
Year 2024,
Volume: 9 Issue: 1, 145 - 153, 29.06.2024
Ufuk Yıldız
,
Fatma Özlemiş
Melek Ünal
Güldan Aydın
Abstract
Naphthalimide derivatives appear as compounds with high biological activity in recent studies. In this regard, it is of great importance to determine the DNA interaction pathways of new derivatives and introduce them to literature. In this study, DNA interactions of naphthalimide derivatives containing different side groups were examined. It was understood by UV titration that the binding mode was intercalation. More precise information about the binding mode was obtained by performing competitive fluorescence experiments with ethidium bromide. The form changes of the compounds on plasmid DNA were examined by agarose gel electrophoresis method and the active concentration was decided.
Project Number
1919B012111464
References
- Zhao, S., Zhang, X., Wei, P., Su, X., Zhao, L., Wu, M., Hao, C., Liu, C., Zhao, D., & Cheng, M. (2017). Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. European Journal of Medicinal Chemistry, 137, 96-107. https://doi.org/10.1016/j.ejmech.2017.05.043
- Mi, Y., Zhang, J., Chen, Y., Sun, X., Tan, W., Li, Q., & Guo, Z. (2020). New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydrate Polymers, 249, 116847. https://doi.org/10.1016/j.carbpol.2020.116847
- Alblewi, F. F., Okasha, R. M., Hritani, Z. M., Mohamed, H. M., El-Nassag, M. A. A., Halawa, A. H., Mora, A., Fouda, A. M., Assiri, M. A., Al-Dies, A. A. M., Afifi, T. H., & El-Agrody, A. M. (2019). Antiproliferative effect, cell cycle arrest and apoptosis generation of novel synthesized anticancer heterocyclic derivatives based 4H-benzo[h]chromene. Bioorganic Chemistry, 87, 560-571. https://doi.org/10.1016/j.bioorg.2019.03.059
- Ravula, S., Bobbala, R. R., & Kolli, B. (2020). Synthesis of novel isoxazole functionalized pyrazolo[3,4-b]pyridine derivatives; their anticancer activity. Journal of Heterocyclic Chemistry, 57(6), 2535-2538. https://doi.org/10.1002/jhet.3968
- Luo, Y., Zhou, Y., Fu, J., & Zhu, H. L. (2014). 4,5-Dihydropyrazole derivatives containing oxygen-bearing heterocycles as potential telomerase inhibitors with anticancer activity. RSC Advances, 4(45), 23904-23913. https://doi.org/10.1039/C4RA02200A
- Liang, G. B., Wei, J. H., Jiang, H., Huang, R. Z., Qin, J. T., Wang, H. L., Wang, H. S., & Zhang, Y. (2021). Design, synthesis and antitumor evaluation of new 1,8-naphthalimide derivatives targeting nuclear DNA. European Journal of Medicinal Chemistry, 210, 112951. https://doi.org/10.1016/j.ejmech.2020.112951
- Dhar, S., Singha Roy, S., Rana, D. K., Bhattacharya, S., Bhattacharya, S., & Bhattacharya, S. C. (2011). Tunable solvatochromic response of newly synthesized antioxidative naphthalimide derivatives: intramolecular charge transfer associated with hydrogen bonding effect. The Journal of Physical Chemistry A, 115(11), 2216-2224. https://doi.org/10.1021/jp1117773
- Sk, U. H., Prakasha Gowda, A. S., Crampsie, M. A., Yun, J. K., Spratt, T. E., Amin, S., & Sharma, A. K. (2011). Development of novel naphthalimide derivatives and their evaluation as potential melanoma therapeutics. European Journal of Medicinal Chemistry, 46(8), 3331-3338. https://doi.org/10.1016/j.ejmech.2011.04.058
- Braña, M. F., Cacho, M., Gradillas, A., De Pascual-Teresa, B., & Ramos, A. (2001). Intercalators as anticancer drugs. Current Pharmaceutical Design, 7(17), 1745-1780. http://doi.org/10.2174/1381612013397113
- Van Quaquebeke, E., Mahieu, T., Dumont, P., Dewelle, J., Ribaucour, F., Simon, G., Sauvage, S., Gaussin, J. F., Tuti, J., El Yazidi, M., Van Vynckt, F., Mijatovic, T., Lefranc, F., Darro, F., & Kiss, R. (2007). 2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin- 5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. Journal of Medicinal Chemistry, 50(17), 4122-4134. https://doi.org/10.1021/jm070315q
- Chen, Z., Liang, X., Zhang, H., Xie, H., Liu, J., Xu, Y., Zhu, W., Wang, Y., Wang, X., Tan, S., Kuang, D., & Qian, X. (2010). A new class of naphthalimide-based antitumor agents that inhibit topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. Journal of Medicinal Chemistry, 53(6), 2589-2600. https://doi.org/10.1021/jm100025u
- Gurova, K. (2009). New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncology, 5(10), 1685-1704. https://doi.org/10.2217%2Ffon.09.127
- Lv, J. S., Peng, X. M., Kishore, B., & Zhou, C. H. (2014). 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: Synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorganic & Medicinal Chemistry Letters, 24(1), 308-313. https://doi.org/10.1016/j.bmcl.2013.11.013
- Mijatovic, T., Mahieu, T., Bruyère, C., Nève, N. D., Dewelle, J., Simon, G., Dehoux, M. J. M., Aar, E. V. D., Haibe-Kains, B., Bontempi, G., Decaestecker, C., Quaquebeke, E. V., Darro, F., & Kiss, R. (2008). UNBS5162, a novel naphthalimide that decreases CXCL chemokine expression in experimental prostate cancers. Neoplasia, 10(6), 573-586. https://doi.org/10.1593/neo.08290
- Ott, I., Xu, Y., Liu, J., Kokoschka, M., Harlos, M., Sheldrick, W. S., & Qian, X. (2008). Sulfur-substituted naphthalimides as photoactivatable anticancer agents: DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells. Bioorganic & Medicinal Chemistry, 16(15), 7107-7116. https://doi.org/10.1016/j.bmc.2008.06.052
- Yıldız, U. (2021). Synthesis and antioxidant activities of novel naphthalimide derivatives. Kocaeli Journal of Science and Engineering, 4(1), 51-58. https://doi.org/10.34088/kojose.816212
- Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology, 3(1), 18-IN14. https://doi.org/10.1016/S0022-2836(61)80004-1
- Baguley, B. C., & Le Bret, M. (1984). Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry, 23(5), 937-943. https://doi.org/10.1021/bi00300a022
- Cusumano, M., Di Pietro, M. L., & Giannetto, A. (1999). Stacking surface effect in the DNA intercalation of some polypyridine platinum(II) complexes. Inorganic Chemistry, 38(8), 1754-1758. https://doi.org/10.1021/ic9809759
- Barton, J. K., Danishefsky, A., & Goldberg, J. (1984). Tris (phenanthroline) ruthenium (II): stereoselectivity in binding to DNA. Journal of the American Chemical Society, 106(7), 2172-2176. https://doi.org/10.1021/ja00319a043
- Wang, W., Young, A., Kim, G., & Kim, S. K., (2015). Oxidative DNA cleavage by Cu(II) complexes: Effect of periphery substituent groups. Journal of Inorganic Biochemistry, 153, 143-149. https://doi.org/10.1016/j.jinorgbio.2015.07.015
Farklı İndüktif Etkilere Sahip Yan Gruplar İçeren Naftalimit Türevlerinin DNA Bağlanma Aktivitelerinin Belirlenmesi
Year 2024,
Volume: 9 Issue: 1, 145 - 153, 29.06.2024
Ufuk Yıldız
,
Fatma Özlemiş
Melek Ünal
Güldan Aydın
Abstract
Naftalimit türevleri, son yıllarda yapılan çalışmalarda yüksek biyolojik aktiviteye sahip bileşikler olarak karşımıza çıkmaktadır. Bu doğrultuda yeni türevlerin DNA etkileşim yollarının belirlenmesi ve literatüre kazandırılması büyük önem taşımaktadır. Bu çalışmada farklı yan gruplar içeren naftalimit türevlerinin DNA etkileşimleri incelenmiştir. UV titrasyonu ile bağlanma türünün interkalasyon olduğu anlaşılmıştır. Etidyumbromür ile yarışmalı floresans deneyleri gerçekleştirilerek bağlanma türü hakkında daha kesin bilgiler elde edilmiştir. Bileşiklerin plazmid DNA üzerinde gerçekleştirdikleri form değişiklikleri agaroz jel elektroforez yöntemiyle incelenmiş ve aktif konsantrasyona karar verilmiştir.
Supporting Institution
TÜBİTAK, Zonguldak Bülent Ecevit Üniversitesi
Project Number
1919B012111464
References
- Zhao, S., Zhang, X., Wei, P., Su, X., Zhao, L., Wu, M., Hao, C., Liu, C., Zhao, D., & Cheng, M. (2017). Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. European Journal of Medicinal Chemistry, 137, 96-107. https://doi.org/10.1016/j.ejmech.2017.05.043
- Mi, Y., Zhang, J., Chen, Y., Sun, X., Tan, W., Li, Q., & Guo, Z. (2020). New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydrate Polymers, 249, 116847. https://doi.org/10.1016/j.carbpol.2020.116847
- Alblewi, F. F., Okasha, R. M., Hritani, Z. M., Mohamed, H. M., El-Nassag, M. A. A., Halawa, A. H., Mora, A., Fouda, A. M., Assiri, M. A., Al-Dies, A. A. M., Afifi, T. H., & El-Agrody, A. M. (2019). Antiproliferative effect, cell cycle arrest and apoptosis generation of novel synthesized anticancer heterocyclic derivatives based 4H-benzo[h]chromene. Bioorganic Chemistry, 87, 560-571. https://doi.org/10.1016/j.bioorg.2019.03.059
- Ravula, S., Bobbala, R. R., & Kolli, B. (2020). Synthesis of novel isoxazole functionalized pyrazolo[3,4-b]pyridine derivatives; their anticancer activity. Journal of Heterocyclic Chemistry, 57(6), 2535-2538. https://doi.org/10.1002/jhet.3968
- Luo, Y., Zhou, Y., Fu, J., & Zhu, H. L. (2014). 4,5-Dihydropyrazole derivatives containing oxygen-bearing heterocycles as potential telomerase inhibitors with anticancer activity. RSC Advances, 4(45), 23904-23913. https://doi.org/10.1039/C4RA02200A
- Liang, G. B., Wei, J. H., Jiang, H., Huang, R. Z., Qin, J. T., Wang, H. L., Wang, H. S., & Zhang, Y. (2021). Design, synthesis and antitumor evaluation of new 1,8-naphthalimide derivatives targeting nuclear DNA. European Journal of Medicinal Chemistry, 210, 112951. https://doi.org/10.1016/j.ejmech.2020.112951
- Dhar, S., Singha Roy, S., Rana, D. K., Bhattacharya, S., Bhattacharya, S., & Bhattacharya, S. C. (2011). Tunable solvatochromic response of newly synthesized antioxidative naphthalimide derivatives: intramolecular charge transfer associated with hydrogen bonding effect. The Journal of Physical Chemistry A, 115(11), 2216-2224. https://doi.org/10.1021/jp1117773
- Sk, U. H., Prakasha Gowda, A. S., Crampsie, M. A., Yun, J. K., Spratt, T. E., Amin, S., & Sharma, A. K. (2011). Development of novel naphthalimide derivatives and their evaluation as potential melanoma therapeutics. European Journal of Medicinal Chemistry, 46(8), 3331-3338. https://doi.org/10.1016/j.ejmech.2011.04.058
- Braña, M. F., Cacho, M., Gradillas, A., De Pascual-Teresa, B., & Ramos, A. (2001). Intercalators as anticancer drugs. Current Pharmaceutical Design, 7(17), 1745-1780. http://doi.org/10.2174/1381612013397113
- Van Quaquebeke, E., Mahieu, T., Dumont, P., Dewelle, J., Ribaucour, F., Simon, G., Sauvage, S., Gaussin, J. F., Tuti, J., El Yazidi, M., Van Vynckt, F., Mijatovic, T., Lefranc, F., Darro, F., & Kiss, R. (2007). 2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin- 5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. Journal of Medicinal Chemistry, 50(17), 4122-4134. https://doi.org/10.1021/jm070315q
- Chen, Z., Liang, X., Zhang, H., Xie, H., Liu, J., Xu, Y., Zhu, W., Wang, Y., Wang, X., Tan, S., Kuang, D., & Qian, X. (2010). A new class of naphthalimide-based antitumor agents that inhibit topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. Journal of Medicinal Chemistry, 53(6), 2589-2600. https://doi.org/10.1021/jm100025u
- Gurova, K. (2009). New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncology, 5(10), 1685-1704. https://doi.org/10.2217%2Ffon.09.127
- Lv, J. S., Peng, X. M., Kishore, B., & Zhou, C. H. (2014). 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: Synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorganic & Medicinal Chemistry Letters, 24(1), 308-313. https://doi.org/10.1016/j.bmcl.2013.11.013
- Mijatovic, T., Mahieu, T., Bruyère, C., Nève, N. D., Dewelle, J., Simon, G., Dehoux, M. J. M., Aar, E. V. D., Haibe-Kains, B., Bontempi, G., Decaestecker, C., Quaquebeke, E. V., Darro, F., & Kiss, R. (2008). UNBS5162, a novel naphthalimide that decreases CXCL chemokine expression in experimental prostate cancers. Neoplasia, 10(6), 573-586. https://doi.org/10.1593/neo.08290
- Ott, I., Xu, Y., Liu, J., Kokoschka, M., Harlos, M., Sheldrick, W. S., & Qian, X. (2008). Sulfur-substituted naphthalimides as photoactivatable anticancer agents: DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells. Bioorganic & Medicinal Chemistry, 16(15), 7107-7116. https://doi.org/10.1016/j.bmc.2008.06.052
- Yıldız, U. (2021). Synthesis and antioxidant activities of novel naphthalimide derivatives. Kocaeli Journal of Science and Engineering, 4(1), 51-58. https://doi.org/10.34088/kojose.816212
- Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology, 3(1), 18-IN14. https://doi.org/10.1016/S0022-2836(61)80004-1
- Baguley, B. C., & Le Bret, M. (1984). Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry, 23(5), 937-943. https://doi.org/10.1021/bi00300a022
- Cusumano, M., Di Pietro, M. L., & Giannetto, A. (1999). Stacking surface effect in the DNA intercalation of some polypyridine platinum(II) complexes. Inorganic Chemistry, 38(8), 1754-1758. https://doi.org/10.1021/ic9809759
- Barton, J. K., Danishefsky, A., & Goldberg, J. (1984). Tris (phenanthroline) ruthenium (II): stereoselectivity in binding to DNA. Journal of the American Chemical Society, 106(7), 2172-2176. https://doi.org/10.1021/ja00319a043
- Wang, W., Young, A., Kim, G., & Kim, S. K., (2015). Oxidative DNA cleavage by Cu(II) complexes: Effect of periphery substituent groups. Journal of Inorganic Biochemistry, 153, 143-149. https://doi.org/10.1016/j.jinorgbio.2015.07.015