Research Article
BibTex RIS Cite

Farklı Eğim Açılı Levhalarla Sınırlandırılmış Çarpan Slot ve Dairesel Jetlerde Taşınımla Isı Transferi Etkilerinin Karşılaştırılması

Year 2024, Volume: 9 Issue: 2, 331 - 350, 29.12.2024
https://doi.org/10.33484/sinopfbd.1436134

Abstract

Bu çalışmada, farklı eğim açılı levhalarla sınırlandırılmış çarpan slot ve dairesel türbülanslı hava jetlerinde, hedef çarpma levhası yüzeyleri boyunca ısı transfer karakteristikleri etkileri deneysel olarak incelenmiştir. Sınırlayıcı levha eğim açısının θ = 0°, 15°, 30° ve 45°, levhalar arası açıklık oranı H/W(D) = 0.5, 1, 3, 6 ve Reynolds sayısının 20000 ile 30000 değerleri için hedef çarpma levhası boyunca termal kamera ile yüzey sıcaklık ölçümleri yapılmıştır. Ölçümlenen sıcaklık değerlerinden hesaplanan Nusselt dağılımları, sınırlayıcı levha eğim açısı, Reynolds sayısı (Re) ve levhalar arası açıklık oranı parametrelerine göre incelenip değişimler değerlendirilmiştir. Hem slot hem de dairesel jetlerde, levhalar arası açıklık oranının H/W(D)≤1 ve sınırlayıcı levha eğim açısının θ≤15° olduğu durumlarda, çarpma levhası üzerindeki Nusselt sayısı dağılımlarında ikincil pikler oluşmaktadır. Levhalar arası açıklık oranı arttıkça, ikincil piklerin etkisi azalmakta ve konumları levha uçlarına doğru kaymaktadır. Artan sınırlandırıcı levha eğim açısı ile birlikte, slot jetlerde ikincil pikler hızla kaybolurken, dairesel jetlerde bu durumun daha yavaş olduğu gözlenmiştir.

Ethical Statement

Çalışma, etik kurul izni veya herhangi bir özel izin gerektirmemektedir.

Supporting Institution

Bu çalışma için herhangi bir kurum ve/veya kuruluştan destek alınmamıştır.

Thanks

Bu çalışma K.T.Ü. Makina Mühendisliği Bölümü Hidrolik ve Akışkanlar Mekaniği Laboratuvarında gerçekleştirilmiştir. Sağladıkları çalışma alanı ve verdikleri ekipman desteği için teşekkür ederiz.

References

  • Danek, C. J. (1995). Heat transfer under impinging jets at very close jet-to-target spacings. [Doktora Tezi, Stanford Üniversitesi, Ann Arbor, ABD].
  • Gardon, R., & Akfirat, J. C. (1965). The role of turbulence in determining the heat-transfer characteristics of impinging jets. International Journal of Heat and Mass Transfer, 8(10), 1261-1272. https://doi.org/10.1016/0017-9310(65)90054-2
  • Livingood, J. N. B., Hrycak, P., & Hrycak, P. (1973), Impingement heat transfer from turbulent air jets to flat plates: a literature survey. NASA Technical Memorandum, Ohio, ABD. https://ntrs.nasa.gov/api/citations/19730016200/downloads/19730016200.pdf
  • Senter, J., & Solliec, C. (2007). Flow field analysis of a turbulent slot air jet impinging on a moving flat surface. International Journal of Heat and Fluid Flow, 28(4), 708-719. https://doi.org/10.1016/j.ijheatfluidflow.2006.08.002
  • Cavadas, A. S., Pinho, F.T., & Campos, J. B. L. M. (2012). Laminar flow field in a viscous liquid impinging jet confined by inclined plane walls. International Journal of Thermal Sciences, 59, 95-110. https://doi.org/10.1016/j.ijthermalsci.2012.04.004
  • Özmen, Y., & Kınay, H. (2023). Investigation of flow and heat transfer characteristics of impinging slot jets confined with inclined plates. Heat Mass Transfer, 59, 509–534. https://doi.org/10.1007/s00231-022-03279-y
  • Kunugi, T., & Kawamura, H. (1987, Ekim). Application of a Two-Equation Turbulence Model to Heat Transfer and Fluid Flow of an Impinging Round Jet. 2nd International Symposium on Transport Phenomena in Turbulent Flows, Tokyo, Japonya.
  • Chiriac, V. A., & Ortega, A. (2002). A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface. International Journal of Heat and Mass Transfer, 45(6), 1237-1248. https://doi.org/10.1016/S0017-9310(01)00224-1
  • Yousefi-Lafouraki, B., Ramiar, A., & Ranjbar, A. A. (2014). Laminar forced convection of a confined slot impinging jet in a converging channel. International Journal of Thermal Sciences, 77, 130-138. https://doi.org/10.1016/j.ijthermalsci.2013.10.014
  • Schrader, H. (1961). Trocknung feuchter Oberflächen mittels Warmluftstrahlen, VDI-Verl. Düsseldorf.
  • Goldstein, R. J., Sobolik, K. A., & Seol, W. S. (1990). Effect of entrainment on the heat transfer to a heated circular air jet ımpinging on a flat surface. ASME Journal of Heat Transfer, 112(3), 608-611. https://doi.org/10.1115/1.2910430
  • Baughn, J. W., & Shimizu, S. (1989). Heat transfer measurements from a surface with uniform heat flux and an impinging jet. Journal of Heat Transfer, 111(4), 1096-1098. https://doi.org/10.1115/1.3250776
  • Popiel, C. O., & Trass, O. (1991). Visualization of a free and impinging round jet. Experimental Thermal and Fluid Science, 4(3), 253-264. https://doi.org/10.1016/0894-1777(91)90043-Q
  • Mohanty, A. K., & Tawfek, A. A. (1993). Heat transfer due to a round jet impinging normal to a flat surface. International Journal of Heat and Mass Transfer, 36(6), 1639-1647. https://doi.org/10.1016/S0017-9310(05)80073-0
  • Huang, L., & El-Genk, M. S. (1994). Heat transfer of an impinging jet on a flat surface. International Journal of Heat and Mass Transfer, 37(13), 1915-1923. https://doi.org/10.1016/0017-9310(94)90331-X
  • Lytle, D., & Webb, B. W. (1994). Air jet impingement heat transfer at low nozzle-plate spacings. International Journal of Heat and Mass Transfer, 37(12), 1687-1697. https://doi.org/10.1016/0017-9310(94)90059-0
  • Colucci, D. W., & Viskanta, R. (1996). Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Experimental Thermal and Fluid Science, 13(1), 71-80. https://doi.org/10.1016/0894-1777(96)00015-5
  • Baydar, E. (1999). Confined impinging air jet at low reynolds numbers. Experimental Thermal and Fluid Science, 19(1), 27-33. https://doi.org/10.1016/S0894-1777(98)10044-4
  • Baydar, E., & Özmen, Y. (2005). An experimental and numerical investigation on a confined impinging air jet at high reynolds numbers. Applied Thermal Engineering, 25(2-3), 409-421. https://doi.org/10.1016/j.applthermaleng.2004.05.016
  • Özmen, Y., & Baydar, E. (2008). Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet reynolds numbers. Heat and Mass Transfer, 44(11), 2008, 1315-1322. https://doi.org/10.1007/s00231-008-0378-4
  • Miranda, J. M., & Campos, J. B. L. M. (1999). Impinging jets confined by a conical wall: Laminar flow predictions. AIChE Journal, 45, 2273-2285. https://doi.org/10.1002/aic.690451103
  • Behnia, M., Parneix, S., Shabany, Y., & Durbin, P. A. (1999). Numerical study of turbulent heat transfer in confined and unconfined impinging jets. International Journal of Heat Fluid Flow, 20, 1-9. https://doi.org/10.1016/S0142-727X(98)10040-1
  • Herrero, R., & Buchlin, J. M. (2010, Temmuz 24-29). Effect of nozzle shape on local heat transfer distribution in impinging jets. 10th International Conference on Quantitative InfraRed Thermography, Quebec, Kanada. https://doi.org/10.21611/qirt.2010.054
  • Lee, D. H., Bae, J. R., Park, H. J., Lee, J. S. & Ligrani, P. (2011). Confined, milliscale unsteady laminar impinging slot jets and surface nusselts numbers. International Journal of Heat and Mass Transfer, 54:2408–24. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.021
  • Cavadas, A. S., Pinho, F. T. & Campos, J. B. L. M. (2012). Laminar flow field in a viscous liquid impinging jet confined by inclined plane walls. International Journal of Thermal Sciences, 59, 95-110. https://doi.org/10.1016/j.ijthermalsci.2012.04.004
  • Al Mubarak, A. A., Shaahid, S. M. & Al-Hadhrami, L. M. (2013). Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets. Thermal Science, 17, 1195-1206. https://doi.org/10.2298/TSCI110630010A
  • Yousefi-Lafouraki, B., Ramiar, A., & Ranjbar, A. A. (2014). Laminar forced convection of a confined slot impinging jet in a converging channel. International Journal of Thermal Sciences, 77, 130-138, 2014. https://doi.org/10.1016/j.ijthermalsci.2013.10.014
  • Bhagwat, A., & Sridharan, A. (2017). Numerical simulation of oblique air jet impingement on a heated flat plate. Journal of Thermal Science and Engineering Application., 1–10. https://doi.org/10.1115/1.4034913
  • Li, Y., Li, B., Qi, F., & Cheung, S. C. P. (2018). Flow and heat transfer of parallel multiple jets obliquely impinging on a flat surface. Applied Thermal Engineering, 10, 2174–2185. https://doi.org/10.1016/j.applthermaleng.2018.01.064
  • Di Venuta, I., Boghi, A., Petracci, I. & Gori, F. (2023). Heat transfer on a flat wall due to a rectangular turbulent jet. International Communications in Heat and Mass Transfer, 144, https://doi.org/10.1016/j.icheatmasstransfer.2023.106769
  • Joshi, J. & Sahu, S. K. (2023). Effect of single and multiple protrusions on thermal performance of slot jet impingement with curved surface. Applied Thermal Engineering, 230. https://doi.org/10.1016/j.applthermaleng.2023.120757
  • Talapati, R. J. & Katti, V. V. (2022). Influence of synthetic air jet temperature on local heat transfer characteristics of synthetic air jet impingement. International Communications in Heat and Mass Transfer, 130, 105796. https://doi.org/10.1016/j.icheatmasstransfer.2021.105796
  • Javidan, M. & Moghadam, A. J. (2022). Effective cooling of a photovoltatic module using jet-impingement array and nanofluid coolant. International Communications in Heat and Mass Transfer, 137. https://doi.org/10.1016/j.icheatmasstransfer.2022.106310
  • Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2011). Introduction to Heat Transfer. Wiley, Sixth Edition. New Jersey, ABD.
  • Lloyd, J. R., & Moran, W. R. (1974). Natural convection adjacent to horizontal surface of various planforms. Journal of Heat Transfer, 96, 443-447. https://doi.org/10.1115/1.3450224
  • Churchill, S. W., & Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 18, 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4
  • Kline, S., & Mcclintock, F. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3-8.

Comparison of Convective Heat Transfer Effects in Impinging Slot and Circular Jets Confined by Plates With Different Inclination Angles

Year 2024, Volume: 9 Issue: 2, 331 - 350, 29.12.2024
https://doi.org/10.33484/sinopfbd.1436134

Abstract

In this study, the effects of heat transfer characteristics along the target impingement plate surfaces in impinging slot and circular turbulent air jets confined by plates with different inclination angles are experimentally investigated. Surface temperature measurements were conducted with a thermal imaging camera on the target impingement plate for inclination angles of confinement plate θ = 0°, 15°, 30° and 45°, rate of plate-to-plate spacing H/W(D) = 0.5, 1, 3, 6 and Reynolds numbers (Re) 20000 and 30000. The Nusselt distributions calculated from the measured temperature values are analyzed and the changes are evaluated according to the confining plate inclination angle, Reynolds number and rate of plate-to-plate spacing parameters. For both slot and circular jets, secondary top points become visible in the Nusselt number distributions on the impingement plate when the rate of plate-to-plate spacing is H/W(D)≤1 and the inclination angle of confinement plate is θ≤15°. As the interval among the plates increases, the influence of the secondary top points decreases and their positions shift towards the plate ends. As the angle of inclination of the confining plate increases, the secondary top points disappear rapidly for slot jets, but more slowly for circular jets.

References

  • Danek, C. J. (1995). Heat transfer under impinging jets at very close jet-to-target spacings. [Doktora Tezi, Stanford Üniversitesi, Ann Arbor, ABD].
  • Gardon, R., & Akfirat, J. C. (1965). The role of turbulence in determining the heat-transfer characteristics of impinging jets. International Journal of Heat and Mass Transfer, 8(10), 1261-1272. https://doi.org/10.1016/0017-9310(65)90054-2
  • Livingood, J. N. B., Hrycak, P., & Hrycak, P. (1973), Impingement heat transfer from turbulent air jets to flat plates: a literature survey. NASA Technical Memorandum, Ohio, ABD. https://ntrs.nasa.gov/api/citations/19730016200/downloads/19730016200.pdf
  • Senter, J., & Solliec, C. (2007). Flow field analysis of a turbulent slot air jet impinging on a moving flat surface. International Journal of Heat and Fluid Flow, 28(4), 708-719. https://doi.org/10.1016/j.ijheatfluidflow.2006.08.002
  • Cavadas, A. S., Pinho, F.T., & Campos, J. B. L. M. (2012). Laminar flow field in a viscous liquid impinging jet confined by inclined plane walls. International Journal of Thermal Sciences, 59, 95-110. https://doi.org/10.1016/j.ijthermalsci.2012.04.004
  • Özmen, Y., & Kınay, H. (2023). Investigation of flow and heat transfer characteristics of impinging slot jets confined with inclined plates. Heat Mass Transfer, 59, 509–534. https://doi.org/10.1007/s00231-022-03279-y
  • Kunugi, T., & Kawamura, H. (1987, Ekim). Application of a Two-Equation Turbulence Model to Heat Transfer and Fluid Flow of an Impinging Round Jet. 2nd International Symposium on Transport Phenomena in Turbulent Flows, Tokyo, Japonya.
  • Chiriac, V. A., & Ortega, A. (2002). A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface. International Journal of Heat and Mass Transfer, 45(6), 1237-1248. https://doi.org/10.1016/S0017-9310(01)00224-1
  • Yousefi-Lafouraki, B., Ramiar, A., & Ranjbar, A. A. (2014). Laminar forced convection of a confined slot impinging jet in a converging channel. International Journal of Thermal Sciences, 77, 130-138. https://doi.org/10.1016/j.ijthermalsci.2013.10.014
  • Schrader, H. (1961). Trocknung feuchter Oberflächen mittels Warmluftstrahlen, VDI-Verl. Düsseldorf.
  • Goldstein, R. J., Sobolik, K. A., & Seol, W. S. (1990). Effect of entrainment on the heat transfer to a heated circular air jet ımpinging on a flat surface. ASME Journal of Heat Transfer, 112(3), 608-611. https://doi.org/10.1115/1.2910430
  • Baughn, J. W., & Shimizu, S. (1989). Heat transfer measurements from a surface with uniform heat flux and an impinging jet. Journal of Heat Transfer, 111(4), 1096-1098. https://doi.org/10.1115/1.3250776
  • Popiel, C. O., & Trass, O. (1991). Visualization of a free and impinging round jet. Experimental Thermal and Fluid Science, 4(3), 253-264. https://doi.org/10.1016/0894-1777(91)90043-Q
  • Mohanty, A. K., & Tawfek, A. A. (1993). Heat transfer due to a round jet impinging normal to a flat surface. International Journal of Heat and Mass Transfer, 36(6), 1639-1647. https://doi.org/10.1016/S0017-9310(05)80073-0
  • Huang, L., & El-Genk, M. S. (1994). Heat transfer of an impinging jet on a flat surface. International Journal of Heat and Mass Transfer, 37(13), 1915-1923. https://doi.org/10.1016/0017-9310(94)90331-X
  • Lytle, D., & Webb, B. W. (1994). Air jet impingement heat transfer at low nozzle-plate spacings. International Journal of Heat and Mass Transfer, 37(12), 1687-1697. https://doi.org/10.1016/0017-9310(94)90059-0
  • Colucci, D. W., & Viskanta, R. (1996). Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Experimental Thermal and Fluid Science, 13(1), 71-80. https://doi.org/10.1016/0894-1777(96)00015-5
  • Baydar, E. (1999). Confined impinging air jet at low reynolds numbers. Experimental Thermal and Fluid Science, 19(1), 27-33. https://doi.org/10.1016/S0894-1777(98)10044-4
  • Baydar, E., & Özmen, Y. (2005). An experimental and numerical investigation on a confined impinging air jet at high reynolds numbers. Applied Thermal Engineering, 25(2-3), 409-421. https://doi.org/10.1016/j.applthermaleng.2004.05.016
  • Özmen, Y., & Baydar, E. (2008). Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet reynolds numbers. Heat and Mass Transfer, 44(11), 2008, 1315-1322. https://doi.org/10.1007/s00231-008-0378-4
  • Miranda, J. M., & Campos, J. B. L. M. (1999). Impinging jets confined by a conical wall: Laminar flow predictions. AIChE Journal, 45, 2273-2285. https://doi.org/10.1002/aic.690451103
  • Behnia, M., Parneix, S., Shabany, Y., & Durbin, P. A. (1999). Numerical study of turbulent heat transfer in confined and unconfined impinging jets. International Journal of Heat Fluid Flow, 20, 1-9. https://doi.org/10.1016/S0142-727X(98)10040-1
  • Herrero, R., & Buchlin, J. M. (2010, Temmuz 24-29). Effect of nozzle shape on local heat transfer distribution in impinging jets. 10th International Conference on Quantitative InfraRed Thermography, Quebec, Kanada. https://doi.org/10.21611/qirt.2010.054
  • Lee, D. H., Bae, J. R., Park, H. J., Lee, J. S. & Ligrani, P. (2011). Confined, milliscale unsteady laminar impinging slot jets and surface nusselts numbers. International Journal of Heat and Mass Transfer, 54:2408–24. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.021
  • Cavadas, A. S., Pinho, F. T. & Campos, J. B. L. M. (2012). Laminar flow field in a viscous liquid impinging jet confined by inclined plane walls. International Journal of Thermal Sciences, 59, 95-110. https://doi.org/10.1016/j.ijthermalsci.2012.04.004
  • Al Mubarak, A. A., Shaahid, S. M. & Al-Hadhrami, L. M. (2013). Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets. Thermal Science, 17, 1195-1206. https://doi.org/10.2298/TSCI110630010A
  • Yousefi-Lafouraki, B., Ramiar, A., & Ranjbar, A. A. (2014). Laminar forced convection of a confined slot impinging jet in a converging channel. International Journal of Thermal Sciences, 77, 130-138, 2014. https://doi.org/10.1016/j.ijthermalsci.2013.10.014
  • Bhagwat, A., & Sridharan, A. (2017). Numerical simulation of oblique air jet impingement on a heated flat plate. Journal of Thermal Science and Engineering Application., 1–10. https://doi.org/10.1115/1.4034913
  • Li, Y., Li, B., Qi, F., & Cheung, S. C. P. (2018). Flow and heat transfer of parallel multiple jets obliquely impinging on a flat surface. Applied Thermal Engineering, 10, 2174–2185. https://doi.org/10.1016/j.applthermaleng.2018.01.064
  • Di Venuta, I., Boghi, A., Petracci, I. & Gori, F. (2023). Heat transfer on a flat wall due to a rectangular turbulent jet. International Communications in Heat and Mass Transfer, 144, https://doi.org/10.1016/j.icheatmasstransfer.2023.106769
  • Joshi, J. & Sahu, S. K. (2023). Effect of single and multiple protrusions on thermal performance of slot jet impingement with curved surface. Applied Thermal Engineering, 230. https://doi.org/10.1016/j.applthermaleng.2023.120757
  • Talapati, R. J. & Katti, V. V. (2022). Influence of synthetic air jet temperature on local heat transfer characteristics of synthetic air jet impingement. International Communications in Heat and Mass Transfer, 130, 105796. https://doi.org/10.1016/j.icheatmasstransfer.2021.105796
  • Javidan, M. & Moghadam, A. J. (2022). Effective cooling of a photovoltatic module using jet-impingement array and nanofluid coolant. International Communications in Heat and Mass Transfer, 137. https://doi.org/10.1016/j.icheatmasstransfer.2022.106310
  • Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2011). Introduction to Heat Transfer. Wiley, Sixth Edition. New Jersey, ABD.
  • Lloyd, J. R., & Moran, W. R. (1974). Natural convection adjacent to horizontal surface of various planforms. Journal of Heat Transfer, 96, 443-447. https://doi.org/10.1115/1.3450224
  • Churchill, S. W., & Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 18, 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4
  • Kline, S., & Mcclintock, F. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3-8.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Haluk Keleş 0000-0002-6562-8902

Yücel Özmen 0000-0003-1127-1060

Publication Date December 29, 2024
Submission Date February 13, 2024
Acceptance Date July 18, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Keleş, H., & Özmen, Y. (2024). Farklı Eğim Açılı Levhalarla Sınırlandırılmış Çarpan Slot ve Dairesel Jetlerde Taşınımla Isı Transferi Etkilerinin Karşılaştırılması. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(2), 331-350. https://doi.org/10.33484/sinopfbd.1436134


Articles published in Sinopjns are licensed under CC BY-NC 4.0.