2-Aminopiridin Türevleri ile 4-Kloro-5-sülfamoilbenzoik Asit Tuzlarının Sentezi, Karakterizasyonu ve Antimikrobiyal Özelliklerinin İncelenmesi
Year 2024,
Volume: 9 Issue: 2, 467 - 482, 29.12.2024
Halil İlkimen
,
Cengiz Yenikaya
,
Aysel Gülbandılar
Abstract
Bu çalışmada, 4-kloro-5-sülfamoilbenzoik asit (HClsba) ile 2-aminopiridin (2ap), 2-amino-3-pikolin (2a3p), 2-amino-5-pikolin (2a5p) ve 2-amino-6-pikolin’in (2a6p) proton transfer tuzları (1-4) sentezlenmiştir. Sentezlenen bileşiklerin yapıları, 1H NMR, IR, elementel analiz ve UV ile açıklanmıştır. Çalışmada kullanılan ve sentezlenen tüm maddelerin $Candida$ $albicans$ (ATCC 14053) mayasına ve $Enterococcus$ $faecalis$ (ATCC 29212), $Staphylococcus$ $aureus$ (NRRL-B 767), $Bacillus$ $subtilis$, $Listeria$ $monocytogenes$ (ATCC 7644) (Gram pozitif), $Pseudomonas$ $aeruginosa$ (ATCC 27853) ve $Escherichia$ $coli$ (ATCC 25922) (Gram negatif) bakterilerine karşı antimikrobiyal aktiviteleri incelenmiştir. Antimikrobiyal aktiviteleri Flukonazol, Levofloksasin, Vankomisin ve Sefepim ile kıyaslanmıştır. Bileşiklerde en iyi aktivite değerleri $S.$ $aureus$ bakterisinde tüm bileşikler (HClsba hariç), $E.$ $coli$ bakterisinde HClsba ve 2ap, $P.$ $aeruginosa$ bakterisinde tüm bileşikler (2a6mp ve 3 hariç), $L.$ $monocytogenes$ bakterisinde HClsba, 2a3mp, 1, 3 ve 4, $E.$ $faecalis$ bakterisinde tüm bileşikler (3 hariç), $B.$ $subtilis$ bakterisinde 2a5mp ve $C.$ $albicans$ mayasında tüm bileşikler (3 hariç) gözlenmiştir.
Ethical Statement
Çalışma, etik kurul izni ve herhangi bir özel izin gerektirmemektedir.
Supporting Institution
Bu çalışma, Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Komisyon’unca, 2020/24 numaralı projesinden alınan maddeler kullanarak hazırlanmıştır.
Project Number
Bu çalışma, Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Komisyon’unca, 2020/24 numaralı proje olarak desteklenmiştir.
Thanks
Katkılarından dolayı Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Komisyonu’na teşekkür ederiz.
References
- Gupta, S. K. S. (2016). Proton transfer reactions in apolar aprotic solvents. Journal of Physical Organic Chemistry, 29, 251-264. https://doi.org/10.1002/poc.3524
- Armentano, D., De Munno, G., Mastropietro, T. F., Julve, M., & Lloret, F. (2005). Intermolecular proton transfer in solid phase: a rare example of crystal-to-crystal transformation from hydroxo-to oxo-bridged iron (III) molecule-based magnet. Journal of the American Chemical Society, 127(31), 10778-10779. https://doi.org/10.1021/ja051203w
- Root, M. J., & MacKinnon, R. (1994). Two identical noninteracting sites in an ion channel revealed by proton transfer. Science, 265, 1852-1856. http://www.jstor.org/stable/2884657
- O’Malley, C., Erxleben, A., McArdle, P., & Simmie, J. M. (2021). Crystallization of organic salts from the gas phase: when does proton transfer take place? Crystal Growth & Design, 21(1), 23–27. https://doi.org/10.1021/acs.cgd.0c01248
- Cruz-Cabeza, A. J., Lusi, M., Wheatcroft, H. P., & Bond, A. D. (2022). The role of solvation in proton transfer reactions: implications for predicting salt/co-crystal formation using the ΔpKa rule. Faraday Discussions, 235, 446-466. https://doi.org/10.1039/D1FD00081K
- Nichols, D. A., Hargis, J. C., Sanishvili, R., Jaishankar, P., Defrees, K., Smith, E. W., Wang, K. K., Prati, F., Renslo, A. R., Woodcock, H. L. & Chen, Y. (2015). Ligand-ınduced proton transfer and low-barrier hydrogen bond revealed by X-ray crystallography. Journal of the American Chemical Society, 137, 8086-8095. https://doi.org/10.1021/jacs.5b00749
- Gerlits, O., Wymore, T., Das, A., Shen, C. H., Parks, J. M., Smith, J. C., Weiss, K. L., Keen, D. A., Blakeley, M. P., Louis, J. M., Langan, P., Weber, I. T., & Kovalevsky, A. (2016). Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site. Angewandte Chemie International Edition, 55, 4924-4927. https://doi.org/10.1002/anie.201509989
- Seyedraoufi, S., Sødahl, E. D., Görbitz, C. H., & Berland, K. (2024). Database mining and first-principles assessment of organic proton-transfer ferroelectrics. Physical Review Materials, 8, 054413. https://doi.org/10.1103/PhysRevMaterials.8.054413
- Liu, H., Ye, Y., Zhang, X., Yang, T., Wen, W., & Jiang, S. (2022). Ferroelectricity in organic materials: from materials characteristics to de novo design. Journal of Materials Chemistry C, 10, 13676-13689. https://doi.org/10.1039/D2TC01330D
- Shimizu, G. K., Taylor, J. M. & Kim, S. (2013). Proton conduction with metal-organic frameworks. Science, 341, 354-355. https://doi.org/10.1126/science.1239872
- Yoon, M., Suh, K., Natarajan, S. & Kim, K. (2013). Proton conduction in metal-organic frameworks and related modularly built porous solids. Angewandte Chemie International Edition, 52, 2688-2700. https://doi.org/10.1002/anie.201206410
- Bolton, O. & Matzger, A. J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angewandte Chemie International Edition, 50, 896-8963. https://doi.org/10.1002/anie.201104164
- Srividya, J., Sivamadhavi, V., & Anbalagan, G. (2022). Synthesis, molecular structural, optical, thermal and third harmonic nonlinear optical analysis of Piperazine-1,4-diium bis(2-carboxy-6-nitrobenzoate) tetrahydrate single crystal Author links open overlay panel. Optical Materials, 129, 112503. https://doi.org/10.1016/j.optmat.2022.112503
- Jayanalina, T., Rajarajan, G., Boopathi, K. & Sreevani, K. (2015). Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal: 2-amino 5-chloropyridinium-L-tartarate. Journal of Crystal Growth, 426, 9-14. https://doi.org/10.1016/j.jcrysgro.2015.05.014
- Lototskyy, M. V., Tolj, I., Davids, M. W., Klochko, Y. V., Parsons, A., Swanepoel, D., Ehlers, R., Louw, G., van der Westhuizen, B., Smith, F., Pollet, B. G., Sita, C. & Linkov, V. (2016). Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module. International Journal of Hydrogen Energy, 41, 13831-13842. https://doi.org/10.1016/j.ijhydene.2016.01.148
- Adamson, A., Guillemin, J. C. & Burk, P. (2015). Proton transfer reactions of hydrazine-boranes. Journal of Physical Organic Chemistry, 28, 244-249. https://doi.org/10.1002/poc.3401
- Spry, D. B. & Fayer, M. D. (2009). Proton transfer and proton concentrations in protonated Nafion fuel cell membranes. Journal of Physical Chemistry B, 113, 10210-10221. https://doi.org/10.1021/jp9036777
- Cochlin, D. (2014). Graphene’s promise for proton transfer in fuel cell membranes. Fuel Cells Bulletin, 2014(12), 1-12. https://doi.org/10.1016/S1464-2859(14)70354-2
- Bica, K., Shamshina, J., Hough, W. L., MacFarlaned, D. R. & Rogers, R. D. (2010). Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. Chemical Communications, 47, 2267-2269. https://doi.org/10.1039/C0CC04485G
- Steed, J. W. (2013). The role of co-crystals in pharmaceutical design. Trends in Pharmacological Sciences, 34, 185-193. https://doi.org/10.1016/j.tips.2012.12.003
- Chen, K., Hirst, J., Camba, R., Bonagura, C.A., Stout, C. D., Burgess, B. K. & Armstrong, F. A. (2000). Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 405, 814-817. https://doi.org/10.1038/35015610
- Chen, K. Y., Chen, K. Y., Cheng, Y. M., Lai, C. H., Hsu, C. C., Ho, M. L., Lee, G. H. & Chou, P. T. (2007). Ortho green fluorescence protein synthetic chromophore; excited-state ıntramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. Journal of the American Chemical Society, 129, 4534-4535. https://doi.org/10.1021/ja070880i
- Luecke, H., Richter, H. T. & Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934-1937. https://doi.org/10.1126/science.280.5371.1934
- Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. & Dencher, N. A. (1994). Proton migration along the membrane surface and retarded surface to bulk transfer. Nature, 370, 379-382. https://doi.org/10.1038/370379a0
- Dellago, C. & Hummer, G. (2006). Kinetics and mechanism of proton transport across membrane nanopores. Physical Review Letters, 97, 245901. https://doi.org/10.1103/PhysRevLett.97.245901
- Aghabozorg, H., Sadrkhanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur., M. (2009). Synthesis, characterization, crystal structures, and solution studies of Ni(II), Cu(II) and Zn(II) complexes obtained from pyridine-2,6-dicarboxylic acid and 2,9-dimethyl-1,10-phenanthroline. Journal of Iranian Chemical Society, 6(1), 55-70. https://doi.org/10.1007/BF0324650
- Kavitha, C., Narendra, K., Ratnakar, A., Poojith, N., Sampath, C., Banik, S., Suchetan, P. A., Potla, K. M. & Naidu, N. V. (2020). An analysis of structural, spectroscopic signatures, reactivity and anti-bacterial study of synthetized 4- chloro-3-sulfamoylbenzoic acid. Journal of Molecular Structure, 1202, 127176. https://doi.org/10.1016/j.molstruc.2019.127176
- Horie, T., Ohno, T. & Kinoshita, K. (1981). Studies on the metabolism of tripamide, a new antihypertensive agent. I. Characterization of metabolites in rats. Xenobiotica, 11(3), 197-206. https://doi.org/10.3109/00498258109045292
- Marinescu, M. (2013). 2-Aminopyridine-A classic and trendy pharmacophore. International Journal of Pharma and Bio Sciences, 8(2), 338-355. http://dx.doi.org/10.22376/ijpbs.2017.8.2.p338-355
- İlkimen, H. & Yenikaya, C. (12-13 Şubat 2021). 2,4-Dikloro-5-Sülfamoilbenzoik Asit İle 2-Aminopiridin Türevlerinin Karışık Ligandlı Cu(II) Komplekslerinin Sentezi ve Karakterizasyonu [Konferans sunumu]. Hodja Akhmet Yassawi 4th International Conference on Scientific Research, Ankara, Türkiye. https://www.yesevikongresi.org/_files/ugd/614b1f_3c87a06525de4399a9817edf0021c4fc.pdf
- İlkimen, H., Yenikaya, C. & Gülbandılar, A. (2023). 2-Metoksi-5-sulfamoyilbenzoik asit ile 2-aminonitropiridin türevlerinin sentezi, karakterizasyonu, antimikrobiyal ve antifungal aktivitelerinin incelenmesi. 3rd International Conference on Innovative Academic Studies, 3(1), 784-793. https://doi.org/10.59287/icias.1632
- İlkimen, H. & Gülbandılar, A. (2023 November 4-5). 2-Amino-6-Substitüepiridin Türevleri ile 2-Metoksi-5-Sulfamoyilbenzoik Asitin Proton Transfer Tuzlarının Sentezi, Karakterizasyonu, Antimikrobiyal ve Antifungal Aktivitelerinin İncelenmesi [Konferans sunumu]. 2nd International Conference on Contemporary Academic Research, ICCAR 2023, Konya, Türkiye https://drive.google.com/file/d/1k9kgUYg4y3ioVmaARt7caRBCPfP6u2Yp/view
- İlkimen, H. & Gülbandılar, A. (2023 November 4-5). 2-Amino-5-Substitüepiridin Türevleri ile 2-Metoksi-5-Sulfamoyilbenzoik Asitin Proton Transfer Tuzlarının Sentezi, Karakterizasyonu, Antimikrobiyal ve Antifungal Aktivitelerinin İncelenmesi [Konferans sunumu]. 2nd International Conference on Contemporary Academic Research, ICCAR 2023, Konya, Türkiye. https://drive.google.com/file/d/1k9kgUYg4y3ioVmaARt7caRBCPfP6u2Yp/view
- İlkimen, H. & Yenikaya, C. (2023 October 19-20). 2,4-Dikloro-5-Sülfamoilbenzoik Asit ile Aminometilpiridin Türevlerinin Cu(II) Komplekslerinin Sentezi ve Karakterizasyonu [Konferans sunumu]. 2nd International Conference on Recent Academic Studies, ICRAS 2023, Konya, Türkiye https://drive.google.com/file/d/1GXn3oVliFak0Sy6wFrMJ0VcQ-2MDXXRk/view
- İlkimen, H., Salün, S. G. & Yenikaya, C. (19-20 Haziran 2021). 2-Metoksi-5-Sülfamoilbenzoik Asitin Metal Komplekslerinin Sentezi ve Karakterizasyonu [Konferans sunumu]. SOCRATES 1st International Health, Engineering and Applied Sciences Congress, Ankara, Türkiye. https://www.socrateskongresi.org
- İlkimen, H., Yenikaya, C. & Gülbandılar, A. (2022 September 23-25). 2-Metoksi-5-Sulfamoyilbenzoik Asit ile 2,3-Diaminopiridin Türevlerinin Proton Transfer Tuzları ve Cu(II) Komplekslerinin Sentezi, Karakterizasyonu, Antimikrobiyal Özelliklerinin İncelenmesi [Konferans sunumu]. III. Baskent International Conference on Multidisciplinary Studies, Ankara, Türkiye. https://www.izdas.org/_files/ugd/614b1f_ededc0fb2e91434f8f254ec769d3339f.pdf
- İlkimen, H., Yenikaya, C. & Gülbandılar, A. (2023). 2-Aminopiridin türevleri ile 2-metoksi-5-sülfamoilbenzoik asit tuzlarının sentezi, karakterizasyonu, antimikrobiyal aktivitelerinin incelenmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 49(2), 53-63. https://doi.org/10.35238/sufefd.1315568
- İlkimen, H. & Yenikaya, C. (2021). 2,4-Dikloro-5-sülfamoilbenzoik asit ile 2-aminopiridin türevlerinin karışık ligandlı Cu(II) komplekslerinin sentezi ve karakterizasyonu. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(14), 96-103. https://doi.org/10.38065/euroasiaorg.505
- İlkimen, H. (2019). Synthesis and characterization of mixed ligand Cu(II) complexes of 2-methoxy-5-sulfamoylbenzoic acid and 2 aminopyridine derivatives. Macedonian Journal of Chemistry and Chemical Engineering, 38(1), 13-17. https://doi.org/10.20450/mjcce.2019.1698
- İlkimen, H., Türken, N. & Gülbandılar, A. (2021). Synthesis, characterization, antimicrobial and antifungal activity of studies of two novel aminopyridine-sulfamoylbenzoic acid salts and their Cu(II) complexes. Journal of the Iranian Chemical Society, 18, 1941-1946. https://doi.org/10.1007/s13738-021-02157-4
- İlkimen, H. & Gülbandılar, A. (2023). Synthesis, characterization, antimicrobial and antifungal activity studies of four novel 2-aminopyridine and 2,4-dichloro-5-sulfamoylbenzoic acid salts and their Cu(II) complexes. Kuwait Journal of Science, 50(3A), 1-11. https://doi.org/10.48129/kjs.19163
- Cook, D. (1961). Vibrational spectra of pyridinium salts. Canadian Journal of Chemistry, 39, 2009-2024. https://doi.org/10.1139/v61-271@cjc-csc.issue01
Synthesis, Characterization and Investigation of Antimicrobial Properties of Salts of 2-Aminopyridine Derivatives and 4-Chloro-5-Sulfamoylbenzoic Acid
Year 2024,
Volume: 9 Issue: 2, 467 - 482, 29.12.2024
Halil İlkimen
,
Cengiz Yenikaya
,
Aysel Gülbandılar
Abstract
In this study, proton transfer salts (1-4) of 4-chloro-5-sulfamoylbenzoic acid (HClsba) with 2-aminopyridine (2ap), 2-amino-3-picoline (2a3p), 2-amino-5-picoline (2a5p) and 2-amino-6-picoline (2a6p) were synthesized. The structures of the synthesized compounds were elucidated by 1H NMR, IR, elemental analysis, and UV. The antimicrobial activities of all substances used and synthesized in the study are examined against the yeast $Candida$ $albicans$ (ATCC 14053), and the bacteria $Enterococcus$ $faecalis$ (ATCC 29212), $Staphylococcus$ $aureus$ (NRRL-B 767), $Bacillus$ $subtilis$, $Listeria$ $monocytogenes$ (ATCC 7644) (Gram positive), $Pseudomonas$ $aeruginosa$ (ATCC 27853) and $Escherichia$ $coli$ (ATCC 25922) (Gram negative). Their antimicrobial activities were compared with Fluconazole, Levofloxacin, Vancomycin and Cefepime. The best activity values of the compounds are all compounds (except HClsba) for $S.$ $aureus$ bacteria, HClsba and 2ap for $E.$ $coli$ bacteria, all compounds (except 2a6mp and 3) for $P.$ $aeruginosa$ bacteria, HClsba, 2a3mp, 1, 3 and 4 for $L.$ $monocytogenes$ bacteria, all compounds (except 3) for $E.$ $faecalis$ bacteria, 2a5mp for $B.$ $subtilis$ bacteria, and all compounds (except 3) were observed for $C.$ $albicans$ yeast.
Project Number
Bu çalışma, Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Komisyon’unca, 2020/24 numaralı proje olarak desteklenmiştir.
References
- Gupta, S. K. S. (2016). Proton transfer reactions in apolar aprotic solvents. Journal of Physical Organic Chemistry, 29, 251-264. https://doi.org/10.1002/poc.3524
- Armentano, D., De Munno, G., Mastropietro, T. F., Julve, M., & Lloret, F. (2005). Intermolecular proton transfer in solid phase: a rare example of crystal-to-crystal transformation from hydroxo-to oxo-bridged iron (III) molecule-based magnet. Journal of the American Chemical Society, 127(31), 10778-10779. https://doi.org/10.1021/ja051203w
- Root, M. J., & MacKinnon, R. (1994). Two identical noninteracting sites in an ion channel revealed by proton transfer. Science, 265, 1852-1856. http://www.jstor.org/stable/2884657
- O’Malley, C., Erxleben, A., McArdle, P., & Simmie, J. M. (2021). Crystallization of organic salts from the gas phase: when does proton transfer take place? Crystal Growth & Design, 21(1), 23–27. https://doi.org/10.1021/acs.cgd.0c01248
- Cruz-Cabeza, A. J., Lusi, M., Wheatcroft, H. P., & Bond, A. D. (2022). The role of solvation in proton transfer reactions: implications for predicting salt/co-crystal formation using the ΔpKa rule. Faraday Discussions, 235, 446-466. https://doi.org/10.1039/D1FD00081K
- Nichols, D. A., Hargis, J. C., Sanishvili, R., Jaishankar, P., Defrees, K., Smith, E. W., Wang, K. K., Prati, F., Renslo, A. R., Woodcock, H. L. & Chen, Y. (2015). Ligand-ınduced proton transfer and low-barrier hydrogen bond revealed by X-ray crystallography. Journal of the American Chemical Society, 137, 8086-8095. https://doi.org/10.1021/jacs.5b00749
- Gerlits, O., Wymore, T., Das, A., Shen, C. H., Parks, J. M., Smith, J. C., Weiss, K. L., Keen, D. A., Blakeley, M. P., Louis, J. M., Langan, P., Weber, I. T., & Kovalevsky, A. (2016). Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site. Angewandte Chemie International Edition, 55, 4924-4927. https://doi.org/10.1002/anie.201509989
- Seyedraoufi, S., Sødahl, E. D., Görbitz, C. H., & Berland, K. (2024). Database mining and first-principles assessment of organic proton-transfer ferroelectrics. Physical Review Materials, 8, 054413. https://doi.org/10.1103/PhysRevMaterials.8.054413
- Liu, H., Ye, Y., Zhang, X., Yang, T., Wen, W., & Jiang, S. (2022). Ferroelectricity in organic materials: from materials characteristics to de novo design. Journal of Materials Chemistry C, 10, 13676-13689. https://doi.org/10.1039/D2TC01330D
- Shimizu, G. K., Taylor, J. M. & Kim, S. (2013). Proton conduction with metal-organic frameworks. Science, 341, 354-355. https://doi.org/10.1126/science.1239872
- Yoon, M., Suh, K., Natarajan, S. & Kim, K. (2013). Proton conduction in metal-organic frameworks and related modularly built porous solids. Angewandte Chemie International Edition, 52, 2688-2700. https://doi.org/10.1002/anie.201206410
- Bolton, O. & Matzger, A. J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angewandte Chemie International Edition, 50, 896-8963. https://doi.org/10.1002/anie.201104164
- Srividya, J., Sivamadhavi, V., & Anbalagan, G. (2022). Synthesis, molecular structural, optical, thermal and third harmonic nonlinear optical analysis of Piperazine-1,4-diium bis(2-carboxy-6-nitrobenzoate) tetrahydrate single crystal Author links open overlay panel. Optical Materials, 129, 112503. https://doi.org/10.1016/j.optmat.2022.112503
- Jayanalina, T., Rajarajan, G., Boopathi, K. & Sreevani, K. (2015). Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal: 2-amino 5-chloropyridinium-L-tartarate. Journal of Crystal Growth, 426, 9-14. https://doi.org/10.1016/j.jcrysgro.2015.05.014
- Lototskyy, M. V., Tolj, I., Davids, M. W., Klochko, Y. V., Parsons, A., Swanepoel, D., Ehlers, R., Louw, G., van der Westhuizen, B., Smith, F., Pollet, B. G., Sita, C. & Linkov, V. (2016). Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module. International Journal of Hydrogen Energy, 41, 13831-13842. https://doi.org/10.1016/j.ijhydene.2016.01.148
- Adamson, A., Guillemin, J. C. & Burk, P. (2015). Proton transfer reactions of hydrazine-boranes. Journal of Physical Organic Chemistry, 28, 244-249. https://doi.org/10.1002/poc.3401
- Spry, D. B. & Fayer, M. D. (2009). Proton transfer and proton concentrations in protonated Nafion fuel cell membranes. Journal of Physical Chemistry B, 113, 10210-10221. https://doi.org/10.1021/jp9036777
- Cochlin, D. (2014). Graphene’s promise for proton transfer in fuel cell membranes. Fuel Cells Bulletin, 2014(12), 1-12. https://doi.org/10.1016/S1464-2859(14)70354-2
- Bica, K., Shamshina, J., Hough, W. L., MacFarlaned, D. R. & Rogers, R. D. (2010). Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. Chemical Communications, 47, 2267-2269. https://doi.org/10.1039/C0CC04485G
- Steed, J. W. (2013). The role of co-crystals in pharmaceutical design. Trends in Pharmacological Sciences, 34, 185-193. https://doi.org/10.1016/j.tips.2012.12.003
- Chen, K., Hirst, J., Camba, R., Bonagura, C.A., Stout, C. D., Burgess, B. K. & Armstrong, F. A. (2000). Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 405, 814-817. https://doi.org/10.1038/35015610
- Chen, K. Y., Chen, K. Y., Cheng, Y. M., Lai, C. H., Hsu, C. C., Ho, M. L., Lee, G. H. & Chou, P. T. (2007). Ortho green fluorescence protein synthetic chromophore; excited-state ıntramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. Journal of the American Chemical Society, 129, 4534-4535. https://doi.org/10.1021/ja070880i
- Luecke, H., Richter, H. T. & Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934-1937. https://doi.org/10.1126/science.280.5371.1934
- Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. & Dencher, N. A. (1994). Proton migration along the membrane surface and retarded surface to bulk transfer. Nature, 370, 379-382. https://doi.org/10.1038/370379a0
- Dellago, C. & Hummer, G. (2006). Kinetics and mechanism of proton transport across membrane nanopores. Physical Review Letters, 97, 245901. https://doi.org/10.1103/PhysRevLett.97.245901
- Aghabozorg, H., Sadrkhanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur., M. (2009). Synthesis, characterization, crystal structures, and solution studies of Ni(II), Cu(II) and Zn(II) complexes obtained from pyridine-2,6-dicarboxylic acid and 2,9-dimethyl-1,10-phenanthroline. Journal of Iranian Chemical Society, 6(1), 55-70. https://doi.org/10.1007/BF0324650
- Kavitha, C., Narendra, K., Ratnakar, A., Poojith, N., Sampath, C., Banik, S., Suchetan, P. A., Potla, K. M. & Naidu, N. V. (2020). An analysis of structural, spectroscopic signatures, reactivity and anti-bacterial study of synthetized 4- chloro-3-sulfamoylbenzoic acid. Journal of Molecular Structure, 1202, 127176. https://doi.org/10.1016/j.molstruc.2019.127176
- Horie, T., Ohno, T. & Kinoshita, K. (1981). Studies on the metabolism of tripamide, a new antihypertensive agent. I. Characterization of metabolites in rats. Xenobiotica, 11(3), 197-206. https://doi.org/10.3109/00498258109045292
- Marinescu, M. (2013). 2-Aminopyridine-A classic and trendy pharmacophore. International Journal of Pharma and Bio Sciences, 8(2), 338-355. http://dx.doi.org/10.22376/ijpbs.2017.8.2.p338-355
- İlkimen, H. & Yenikaya, C. (12-13 Şubat 2021). 2,4-Dikloro-5-Sülfamoilbenzoik Asit İle 2-Aminopiridin Türevlerinin Karışık Ligandlı Cu(II) Komplekslerinin Sentezi ve Karakterizasyonu [Konferans sunumu]. Hodja Akhmet Yassawi 4th International Conference on Scientific Research, Ankara, Türkiye. https://www.yesevikongresi.org/_files/ugd/614b1f_3c87a06525de4399a9817edf0021c4fc.pdf
- İlkimen, H., Yenikaya, C. & Gülbandılar, A. (2023). 2-Metoksi-5-sulfamoyilbenzoik asit ile 2-aminonitropiridin türevlerinin sentezi, karakterizasyonu, antimikrobiyal ve antifungal aktivitelerinin incelenmesi. 3rd International Conference on Innovative Academic Studies, 3(1), 784-793. https://doi.org/10.59287/icias.1632
- İlkimen, H. & Gülbandılar, A. (2023 November 4-5). 2-Amino-6-Substitüepiridin Türevleri ile 2-Metoksi-5-Sulfamoyilbenzoik Asitin Proton Transfer Tuzlarının Sentezi, Karakterizasyonu, Antimikrobiyal ve Antifungal Aktivitelerinin İncelenmesi [Konferans sunumu]. 2nd International Conference on Contemporary Academic Research, ICCAR 2023, Konya, Türkiye https://drive.google.com/file/d/1k9kgUYg4y3ioVmaARt7caRBCPfP6u2Yp/view
- İlkimen, H. & Gülbandılar, A. (2023 November 4-5). 2-Amino-5-Substitüepiridin Türevleri ile 2-Metoksi-5-Sulfamoyilbenzoik Asitin Proton Transfer Tuzlarının Sentezi, Karakterizasyonu, Antimikrobiyal ve Antifungal Aktivitelerinin İncelenmesi [Konferans sunumu]. 2nd International Conference on Contemporary Academic Research, ICCAR 2023, Konya, Türkiye. https://drive.google.com/file/d/1k9kgUYg4y3ioVmaARt7caRBCPfP6u2Yp/view
- İlkimen, H. & Yenikaya, C. (2023 October 19-20). 2,4-Dikloro-5-Sülfamoilbenzoik Asit ile Aminometilpiridin Türevlerinin Cu(II) Komplekslerinin Sentezi ve Karakterizasyonu [Konferans sunumu]. 2nd International Conference on Recent Academic Studies, ICRAS 2023, Konya, Türkiye https://drive.google.com/file/d/1GXn3oVliFak0Sy6wFrMJ0VcQ-2MDXXRk/view
- İlkimen, H., Salün, S. G. & Yenikaya, C. (19-20 Haziran 2021). 2-Metoksi-5-Sülfamoilbenzoik Asitin Metal Komplekslerinin Sentezi ve Karakterizasyonu [Konferans sunumu]. SOCRATES 1st International Health, Engineering and Applied Sciences Congress, Ankara, Türkiye. https://www.socrateskongresi.org
- İlkimen, H., Yenikaya, C. & Gülbandılar, A. (2022 September 23-25). 2-Metoksi-5-Sulfamoyilbenzoik Asit ile 2,3-Diaminopiridin Türevlerinin Proton Transfer Tuzları ve Cu(II) Komplekslerinin Sentezi, Karakterizasyonu, Antimikrobiyal Özelliklerinin İncelenmesi [Konferans sunumu]. III. Baskent International Conference on Multidisciplinary Studies, Ankara, Türkiye. https://www.izdas.org/_files/ugd/614b1f_ededc0fb2e91434f8f254ec769d3339f.pdf
- İlkimen, H., Yenikaya, C. & Gülbandılar, A. (2023). 2-Aminopiridin türevleri ile 2-metoksi-5-sülfamoilbenzoik asit tuzlarının sentezi, karakterizasyonu, antimikrobiyal aktivitelerinin incelenmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 49(2), 53-63. https://doi.org/10.35238/sufefd.1315568
- İlkimen, H. & Yenikaya, C. (2021). 2,4-Dikloro-5-sülfamoilbenzoik asit ile 2-aminopiridin türevlerinin karışık ligandlı Cu(II) komplekslerinin sentezi ve karakterizasyonu. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(14), 96-103. https://doi.org/10.38065/euroasiaorg.505
- İlkimen, H. (2019). Synthesis and characterization of mixed ligand Cu(II) complexes of 2-methoxy-5-sulfamoylbenzoic acid and 2 aminopyridine derivatives. Macedonian Journal of Chemistry and Chemical Engineering, 38(1), 13-17. https://doi.org/10.20450/mjcce.2019.1698
- İlkimen, H., Türken, N. & Gülbandılar, A. (2021). Synthesis, characterization, antimicrobial and antifungal activity of studies of two novel aminopyridine-sulfamoylbenzoic acid salts and their Cu(II) complexes. Journal of the Iranian Chemical Society, 18, 1941-1946. https://doi.org/10.1007/s13738-021-02157-4
- İlkimen, H. & Gülbandılar, A. (2023). Synthesis, characterization, antimicrobial and antifungal activity studies of four novel 2-aminopyridine and 2,4-dichloro-5-sulfamoylbenzoic acid salts and their Cu(II) complexes. Kuwait Journal of Science, 50(3A), 1-11. https://doi.org/10.48129/kjs.19163
- Cook, D. (1961). Vibrational spectra of pyridinium salts. Canadian Journal of Chemistry, 39, 2009-2024. https://doi.org/10.1139/v61-271@cjc-csc.issue01