Assessment of the Spatial and Temporal Variation of Mesozooplankton in the Southern Black Sea, Türkiye
Year 2024,
Volume: 9 Issue: 2, 311 - 330, 29.12.2024
Funda Üstün
,
Levent Bat
,
Fatma Bayram Partal
,
Hakan Atabay
,
Sabri Mutlu
,
Leyla Tolun
,
Orçin Uygun
,
Didem Özdemir Mis
Abstract
This study investigated the taxonomic composition, abundance, and biomass values of mesozooplankton in the marine area in front of two important rivers (Sakarya River and Yeşilırmak River) and the largest port located on the Black Sea coast in Türkiye (Samsun Port) in July 2019 and January 2020. The average mesozooplankton abundance and biomass were 4187.3 ind. m-3 and 89.7 mg m-3 in Sakarya River, 3638.5 ind. m-3 and 78.2 mg m-3 in Samsun Port, and 3327.6 ind.m-3 and 77.6 mg m-3 in Yeşilırmak River, respectively. In July 2019, the highest abundance value of mesozooplankton (8581 ind. m-3) was recorded at SAK08 station off Sakarya River due to the copepod $Acartia$ $clausi$ (3279 ind. m-3). In July 2019, the highest biomass value of mesozooplankton (209.34 mg m-3) was found at YSL07 station off Yeşilırmak River with the contribution of the copepod $Centropages$ $ponticus$ (77.90 mg m-3). In January 2020, the highest abundance and biomass values of mesozooplankton (4035 ind. m-3 and 66.45 mg m-3) were detected at SLI05 station off Samsun Port due to copepod $Acartia$ $clausi$. A difference in mesozooplankton species composition between the two sampling periods was identified. While Cladocera species and copepod $Acartia$ $tonsa$ were exclusive at the sampling stations in July 2019, copepod $Calanus$ $euxinus$, $Pseudocalanus$ $elongatus$ and $Oithona$ $similis$ were observed at the sampling stations in January 2020. Also, in January 2020, the presence of freshwater Cladocera species was detected off Sakarya River. The changes in biodiversity were determined to depend on temperature changes and riverine input.
Ethical Statement
The study does not require ethics committee permission or any special permission.
Supporting Institution
This study was supported by the ANEMONE (Assessing the vulnerability of the Black Sea marine ecosystem to human pressures) Project (funded by the European Union under the ENI CBC Black Sea Basin Programme 2014-2020, project number BSB319).
Thanks
We thank to the ANEMONE (Assessing the vulnerability of the Black Sea marine ecosystem to human pressures) Project (funded by the European Union under the ENI CBC Black Sea Basin Programme 2014-2020, project number BSB319).
References
- Theodorou, I., Zervoudaki, S., Varkitzi, I., & Tsirtsis, G. (2023). Assessing good environmental status through mesozooplankton biodiversity: a step forward. Journal of Plankton Research, 45(1), 52–64. https://doi.org/10.1093/plankt/fbac067
- Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the ocean carbon cycle. The Annual Review of Marine Science, 9, 413–444. https://doi.org/10.1146/annurev-marine-010814-015924
- Kovalev, A. V., Skryabin, V. A., Zagorodnyaya, Yu. A., Niermann, U., Bingel, F., Kıdeyş, A. E., Niermann, U., & Uysal, Z. (1999). The Black Sea zooplankton: composition, spatial/temporal distribution and history of investigations. Turkish Journal of Zoology, 23(2), 195–209.
- Dzierzbicka-Głowacka, L., Kalarus, M., & Żmijewska, M. I. (2013). Interannual variability in the population dynamics of the main mesozooplankton species in the Gulf of Gdańsk (southern Baltic Sea): Seasonal and spatial distribution. Oceanologia, 55(2), 409–434. https://doi.org/10.5697/oc.55-2.409
- Piontkovski, S. A., Fonda-Umani, S., Stefanova, K., Kamburska, L., Olazabal, A. De. (2011). An impact of atmospheric anomalies on zooplankton communities in the Northern Adriatic and Black Seas. International Journal of Oceans and Oceanography, 5(1), 53–71.
- Gubanova, A., Goubanova, K., Krivenko, O., Stefanova, K., Garbazey, O., Belokopytov, V., Liashko, T., & Stefanova, E. (2022). Response of the Black Sea zooplankton to the marine heatwave 2010: Case of the Sevastopol Bay. Journal of Marine Science and Engineering, 10(12), 1933. https://doi.org/10.3390/jmse10121933
- Kovalev, A. V., Niermann, U., Melnikov, V. V., Belokopytov, V., Uysal, Z., Kıdeyş, A. E., Ünsal, M., & Altukhov, D. (1998). Long-term changes in the Black Sea zooplankton: the role of natural and antropogenic factors. In. L, Ivanov, T. Oguz (Ed), NATO TU-Black Sea Assessment Workshop: NATO TU-Black Sea Project, Symposium on Scientific Results, (pp. 221–234).
- Selifonova, J. (2000). Seasonal and long-term dynamics of the zooplankton community in Novorossiysk Bay of the Black Sea exposed to anthropogenic impact. Acta Zoologica Bulgarica, 52(3), 63–74.
- Arashkevich, E. G., Timonin, A. G., Zatsepin, A. G., Kremenetskiy, V. V., & Drits, A. V. (2005). Effect of the rim current regime on the zooplankton distribution in the “shelf-slope-deep sea” system in the Black Sea. Oceanology, 45(Suppl. 1), 149–160.
- Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2009). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528–1537. https://doi.org/10.1093/icesjms/fsp047
- Bedford, J., Ostle, C., Johns, D. G., Atkinson, A., Best, M., Bresnan, E., Machairopoulou, M., Graves, C. A., Devlin, M., Milligan, A., Piotis, S., Mellor, A., Tett, P., & McQuatters-Gollop, A. (2020). Lifeform indicators reveal large‐scale shifts in plankton across the North‐West European shelf. Global Change Biology, 26(6), 3482–3497. https://doi.org/10.1111/gcb.15066
- Stefanova, K. (2015). Long-term shifts of the zooplankton community in the western Black Sea (Cape Galata Transect, Bulgarian Coast). Journal of Research in Environmental and Earth Science, 2(6), 01–10.
- Besiktepe, S., Kucuksezgin, F., Besiktepe, S. T., Eronat, C., Gonul, T., Terbıyık Kurt, T., Sayın, E., & Gubanova, A. (2023). Variations in copepod composition and diversity in relation to eutrophication and hydrology in İzmir Bay, Aegean Sea. Marine Pollution Bulletin, 197, 115745. https://doi.org/10.1016/j.marpolbul.2023.115745.
- Isik, S., Dogan, E., Kalin, L., Sasal, M., & Agiralioglu, N. (2008). Effects of anthropogenic activities on the Lower Sakarya River. Catena, 75(2), 172–181. https://doi.org/10.1016/j.catena.2008.06.001
- Şimşek, A., Türkten, H., & Bakan, G. (2022). Evaluation of water quality of the middle Black Sea region, Kızılırmak and Yeşilırmak Rivers using water quality index and statistical analysis. The Black Sea Journal of Sciences, 12(2), 645–662. https://doi.org/10.31466/kfbd.1100682 (in Turkish).
- Yılmaz, A. (2006). The port of Samsun. Türk Coğrafya Dergisi, 45, 85–100. (in Turkish).
- Hansen, H. P. (1999). Determination of oxygen. In K. Grasshoff, K. Kremling, M. Ehrhard (Ed). The methods of seawater analysis, (pp. 75–89). 3rd ed. Wiley: VCH Verlag, https://doi.org/10.1002/9783527613984.ch4
- Parsons, T. R., Maita, Y., & Lalli, C. M. (Ed.) (1984). A manual of chemical and biological methods for seawater analysis. Oxford (UK): Pergamon Press.
- Postel, L., Fock, H., & Hagen, W. (2000). Collecting zooplankton. In R. Harris, P. Wiebe, H.R. Skjoldal, M. Huntley (Ed). ICES Zooplankton methodology manual, (pp. 53–81). London (UK): Academic Press.
- Petipa, T. S. (1957). On average weight of the main zooplankton forms in the Black Sea. Proceedings of Sevastopol Biological Station, 9, 39–57. (in Russian).
- Niermann, U., Kideys, A. E., Besiktep,e S., Nicolae, B., Goubanova, A., Khoroshilov, V., Mikaelyan, A., Moncheva, S., Mutlu, E., Nezlin, N., Petruanu, A., Senichkina, L., Shiganova, T. (1995). An assessment of recent Phyto and Zooplankton investigations in the Black Sea and planning for future. Report on the meeting of Marine Biologists in Erdemli, Turkey, 20 February-3 March 1995. TU-Black Sea Project, NATO Science for Stability Program. M.E.T.U., Institute of Marine Sciences, Erdemli, İçel, Turkey; p. 100.
- Bradford-Grieve, J. M., Markhaseva, E. L., Rocha, C. E. F., & Abiahy, B. (1999). Copepoda. In D. Boltovskoy, (Ed), South Atlantic Zooplankton, (pp. 869–1098). Leiden: Backhuys Publishers.
- Conway, D. V. P., White, R. G., Hugues-Dit-Ciles, J., Gallienne, C. P., & Robins, D. B. (Ed.) (2003). Guide to the coastal and surface zooplankton of the south-western Indian Ocean. Plymouth: United Kingdom.
- Lazăr, L., Boicenco, L., Denga, Y., Tolun, L., & Kurt, G (Ed) (2021a). Anthropogenic pressures and impacts on the Black Sea coastal ecosystem. CD Press: Bucharest, Romania.
- Lazăr, L., Boicenco, L., Moncheva, S., Denga, Y., & Atabay, H. et al. (Ed.) (2021b). Impact of the rivers on the Black Sea Ecosystem. CD Press: Bucharest, Romania.
- Calbet, A., Garrido, S., Saiz, E., Alcaraz, M., & Duarte, C. M. (2001). Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. Journal of Plankton Research, 23(3), 319–331. https://doi.org/10.1093/plankt/23.3.319
- Tan, İ., Atabay, H., Mutlu, S., Tolun, L. G., Polat Beken, S. Ç. (2023). A comparison of the surface water quality in distinct areas of the southern Black Sea coast under various pressures. Research Square, 1–12. https://doi.org/10.21203/rs.3.rs-3100718/v1
- Rekik, A., Guermazi, W., Kmiha-Megdiche, S., Sellami, I., Pagano, M., Ayadi, H., & Elloumi, J. (2023). Spatial variation of summer microphytoplankton and zooplankton communities related to environmental parameters in the coastal area of Djerba Island (Tunisia, Eastern Mediterranean). Mediterranean Marine Science, 24(1), 156–172. https://doi.org/10.12681/mms.30650
- Üstün, F., Bat, L., & Mutlu, E. (2018). Seasonal variation and taxonomic composition of mesozooplankton in the Southern Black Sea (off Sinop) between 2005 and 2009. Turkish Journal of Zoology, 42(5), 541–556. http://dx.doi.org/10.3906/zoo-1801-13
- Bişinicu, E., Lazăr, L., & Timofte, F. (2023a). Dynamics of zooplankton along the Romanian Black Sea coastline: Temporal variation, community structure, and environmental drivers. Diversity, 15(9), 1024. https://doi.org/10.3390/d15091024
- Besiktepe, S. (2001). Diel vertical distribution, and herbivory of copepods in the south-western part of the Black Sea. Journal of Marine Systems, 28(3–4), 281–301. https://doi.org/10.1016/S0924-7963(01)00029-X
- Yıldız, İ., & Feyzioğlu, A. M. (2014). Biological diversity and seasonal variation of mesozooplankton in the southeastern Black Sea coastal ecosystem. Turkish Journal of Zoology, 38(2), 179–190. https://doi.org/10.3906/zoo-1304-32
- Üstün, F. (2019). Seasonal cycle of zooplankton abundance and biomass in Hamsilos Bay, Sinop, southern Black Sea, Turkey. Journal of Natural History, 53(7–8), 365–389. https://doi.org/10.1080/00222933.2019.1592257
- Prusova, I. Yu., & Galagovets, E. A. (2022). Sex ratios of calanoid copepods in the northern Black Sea. Regional Studies in Marine Science, 55, 102576. https://doi.org/10.1016/j.rsma.2022.102576
- Bişinicu, E., Harcota, G. E., & Lazăr, L. (2023b). Interactions between environmental factors and the mesozooplankton community from the Romanian Black Sea waters. Turkish Journal of Zoology, 47(4), 202–2015. https://doi.org/10.55730/1300-0179.3133
- Gülşahin, N., & Tarkan, A. N. (2012). Seasonal changes in distribution and abundance of the cladoceran species in relation to environmental factors in Gökova Bay (Muğla, Aegean Sea, Turkey). Fresenius Environmental Bulletin, 21(7a), 1853–1863.
- Bedikoğlu, D., Yilmaz, I. N., & Demirel, N. (2022). Reproductive strategies and population characteristics of key Cladocera species in the Sea of Marmara. Regional Studies in Marine Science, 54, 102450. https://doi.org/10.1016/j.rsma.2022.102450
- Marazzo, A., & Valentin, J. L. (2000). A report on the marine cladoceran Evadne spinifera Müller (Crustacea, Branchiopoda) in Guanabara Bay, Rio de Janeiro, Brazil. Revista brasileira de Zoologia, 17(4), 1101–1102.
- Marazzo, A., & Valentin, J. L. (2001). Spatial and temporal variations of Penilia avirostris and Evadne tergestina (Crustacea, Branchiopoda) in a Tropical Bay, Brazil. Hydrobiologia, 445(1–3), 133–139. https://doi.org/10.1023/A:1017592323388
- Lebedeva, L. P., Lukasheva, T. A., Anokhina, L. L., & Chasovnikov, V. K. (2015). Interannual variability in the zooplankton community in Golubaya Bay (Northeastern part of the Black Sea) in 2002–2012. Oceanology, 55(3), 355–363. https://doi.org/10.1134/S0001437015030091
- Vereshchaka, A. L., Anokhina, L. L., Lukasheva, T. A., & Lunina, A. A. (2019). Long-term studies reveal major environmental factors driving zooplankton dynamics and periodicities in the Black Sea coastal zooplankton. PeerJ, 7, e7588. https://doi.org/10.7717/peerj.7588
- Kirchner, M., Sahling, G., Uhlig, G., Gunkel, W., & Klings, K. W. (1996). Does the red tide-forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia, 81(1), 45–55. https://doi.org/10.1080/00364827.1996.10413610
- Mikaelyan, A. S., Malej, A., Shiganova, T. A., Turk, V., Sivkovitch, A. E., Musaeva, E. I., Kogovsek, T., & Lukasheva, T. A. (2014). Populations of the red tide forming dinoflagellate Noctiluca scintillans (Macartney): A comparison between the Black Sea and the northern Adriatic Sea. Harmful Algae, 33, 29–40. http://dx.doi.org/10.1016/j.hal.2014.01.004
- Oguz, T., & Velikova, V. (2010). Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Marine Ecology Progress Series, 405, 231–242. https://doi.org/10.3354/meps08538
- Nikishina, A. B., Drits, A. V., Vasilyeva, Yu. V., Timonin, A. G., Solovyev, K. A., Ratkova, T. N., & Sergeeva, V. M. (2011). Role of the Noctiluca scintillans population in the trophic dynamics of the Black Sea plankton over the spring period. Oceanology, 51(6), 1029–1039. https://doi.org/10.1134/S0001437011060129
- Aytan, Ü., & Şentürk, Y. (2018) Dynamics of Noctiluca scintillans (Macartney) Kofoid & Swezy and its contribution to mesozooplankton in the southeastern Black Sea. Aquatic Sciences and Engineering, 33(3), 84–89. https://doi.org/10.26650/ASE201814
- Oguz, T., Malanotte-Rizzoli, P., & Ducklow, H. W. (2001). Simulations of phytoplankon seasonal cycle with multi-level and multi-layer physical-ecosystem models: the Black Sea example. Ecological Modelling, 144(2–3), 295–314. https://doi.org/10.1016/S0304-3800(01)00378-7
- Kopuz, U., Feyzioglu, A. M., & Valente, A. (2014). An unusual red-tide event of Noctiluca scintillans (Macartney) in the southeastern Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 14(1), 261–268. http://doi.org/10.4194/1303-2712-v14_1_28 (in Turkish)
- Belmonte, G., & Rubino, F. (2019). Resting cysts from coastal marine plankton. Oceanography and Marine Biology, 57, 1 – 88.
Güney Karadeniz’in Mesozooplanktonun Mekansal ve Zamansal Değişiminin Değerlendirilmesi
Year 2024,
Volume: 9 Issue: 2, 311 - 330, 29.12.2024
Funda Üstün
,
Levent Bat
,
Fatma Bayram Partal
,
Hakan Atabay
,
Sabri Mutlu
,
Leyla Tolun
,
Orçin Uygun
,
Didem Özdemir Mis
Abstract
Mevcut çalışmada, Temmuz 2019 ve Ocak 2020’de Türkiye'nin Karadeniz kıyılarında yer alan iki önemli nehir (Sakarya Nehri ve Yeşilırmak Nehri) ile Karadeniz’in en büyük limanı olan Samsun Limanı önündeki denizel alandaki mesozooplanktonun taksonomik kompozisyonu, bolluk ve biyokütle değerleri incelenmiştir. Ortalama mesozooplankton bolluğu ve biyokütlesi sırasıyla Sakarya Nehri’nde 4187.3 birey m-3 ve 89.7 mg m-3, Samsun Limanı’nda 3638.5 birey m-3 ve 78.2 mg m-3 ve Yeşilırmak Nehri’nde 3327.6 birey m-3 ve 77.6 mg m-3 olarak hesaplanmıştır. Temmuz 2019’da mezozooplanktonun en yüksek bolluk değeri, Sakarya Nehri açıklarındaki SAK08 istasyonunda kopepod $Acartia$ $clausi$’nin yüksek katkısı (3279 birey m-3) nedeniyle kaydedilmiştir. Temmuz 2019’da mezozooplanktonun en yüksek biyokütle değeri ise Yeşilırmak Nehri açıklarındaki YSL07 istasyonunda, kopepod $Centropages$ $ponticus$’un yüksek katkısıyla (77.90 mg m-3) belirlenmiştir. Ocak 2020’de mesozooplanktonun en yüksek bolluk ve biyokütle değerleri (4035 birey m-3 ve 66.45 mg m-3) Samsun Limanı açıklarındaki SLI05 istasyonunda kopepod $Acartia$ $clausi$’nin yüksek katkısı ile tespit edilmiştir. Mesozooplankton tür kompozisyonunda iki örnekleme dönemi arasında farklılık saptanmıştır. Cladocera türleri ve copepod $Acartia$ $tonsa$ Temmuz 2019’da örnekleme istasyonlarında tespit edilmişken, $Calanus$ $euxinus$, $Pseudocalanus$ $elongatus$ ve $Oithona$ $similis$ Ocak 2020’de örnekleme istasyonlarında gözlemlenmiştir. Ayrıca Ocak 2020’de Sakarya Nehri açıklarında tatlısu Cladocera türlerinin varlığı saptanmıştır. Biyoçeşitlilikteki değişikliklerin sıcaklık değişimlerine ve nehir girdisine bağlı olduğu belirlenmiştir
References
- Theodorou, I., Zervoudaki, S., Varkitzi, I., & Tsirtsis, G. (2023). Assessing good environmental status through mesozooplankton biodiversity: a step forward. Journal of Plankton Research, 45(1), 52–64. https://doi.org/10.1093/plankt/fbac067
- Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the ocean carbon cycle. The Annual Review of Marine Science, 9, 413–444. https://doi.org/10.1146/annurev-marine-010814-015924
- Kovalev, A. V., Skryabin, V. A., Zagorodnyaya, Yu. A., Niermann, U., Bingel, F., Kıdeyş, A. E., Niermann, U., & Uysal, Z. (1999). The Black Sea zooplankton: composition, spatial/temporal distribution and history of investigations. Turkish Journal of Zoology, 23(2), 195–209.
- Dzierzbicka-Głowacka, L., Kalarus, M., & Żmijewska, M. I. (2013). Interannual variability in the population dynamics of the main mesozooplankton species in the Gulf of Gdańsk (southern Baltic Sea): Seasonal and spatial distribution. Oceanologia, 55(2), 409–434. https://doi.org/10.5697/oc.55-2.409
- Piontkovski, S. A., Fonda-Umani, S., Stefanova, K., Kamburska, L., Olazabal, A. De. (2011). An impact of atmospheric anomalies on zooplankton communities in the Northern Adriatic and Black Seas. International Journal of Oceans and Oceanography, 5(1), 53–71.
- Gubanova, A., Goubanova, K., Krivenko, O., Stefanova, K., Garbazey, O., Belokopytov, V., Liashko, T., & Stefanova, E. (2022). Response of the Black Sea zooplankton to the marine heatwave 2010: Case of the Sevastopol Bay. Journal of Marine Science and Engineering, 10(12), 1933. https://doi.org/10.3390/jmse10121933
- Kovalev, A. V., Niermann, U., Melnikov, V. V., Belokopytov, V., Uysal, Z., Kıdeyş, A. E., Ünsal, M., & Altukhov, D. (1998). Long-term changes in the Black Sea zooplankton: the role of natural and antropogenic factors. In. L, Ivanov, T. Oguz (Ed), NATO TU-Black Sea Assessment Workshop: NATO TU-Black Sea Project, Symposium on Scientific Results, (pp. 221–234).
- Selifonova, J. (2000). Seasonal and long-term dynamics of the zooplankton community in Novorossiysk Bay of the Black Sea exposed to anthropogenic impact. Acta Zoologica Bulgarica, 52(3), 63–74.
- Arashkevich, E. G., Timonin, A. G., Zatsepin, A. G., Kremenetskiy, V. V., & Drits, A. V. (2005). Effect of the rim current regime on the zooplankton distribution in the “shelf-slope-deep sea” system in the Black Sea. Oceanology, 45(Suppl. 1), 149–160.
- Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2009). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528–1537. https://doi.org/10.1093/icesjms/fsp047
- Bedford, J., Ostle, C., Johns, D. G., Atkinson, A., Best, M., Bresnan, E., Machairopoulou, M., Graves, C. A., Devlin, M., Milligan, A., Piotis, S., Mellor, A., Tett, P., & McQuatters-Gollop, A. (2020). Lifeform indicators reveal large‐scale shifts in plankton across the North‐West European shelf. Global Change Biology, 26(6), 3482–3497. https://doi.org/10.1111/gcb.15066
- Stefanova, K. (2015). Long-term shifts of the zooplankton community in the western Black Sea (Cape Galata Transect, Bulgarian Coast). Journal of Research in Environmental and Earth Science, 2(6), 01–10.
- Besiktepe, S., Kucuksezgin, F., Besiktepe, S. T., Eronat, C., Gonul, T., Terbıyık Kurt, T., Sayın, E., & Gubanova, A. (2023). Variations in copepod composition and diversity in relation to eutrophication and hydrology in İzmir Bay, Aegean Sea. Marine Pollution Bulletin, 197, 115745. https://doi.org/10.1016/j.marpolbul.2023.115745.
- Isik, S., Dogan, E., Kalin, L., Sasal, M., & Agiralioglu, N. (2008). Effects of anthropogenic activities on the Lower Sakarya River. Catena, 75(2), 172–181. https://doi.org/10.1016/j.catena.2008.06.001
- Şimşek, A., Türkten, H., & Bakan, G. (2022). Evaluation of water quality of the middle Black Sea region, Kızılırmak and Yeşilırmak Rivers using water quality index and statistical analysis. The Black Sea Journal of Sciences, 12(2), 645–662. https://doi.org/10.31466/kfbd.1100682 (in Turkish).
- Yılmaz, A. (2006). The port of Samsun. Türk Coğrafya Dergisi, 45, 85–100. (in Turkish).
- Hansen, H. P. (1999). Determination of oxygen. In K. Grasshoff, K. Kremling, M. Ehrhard (Ed). The methods of seawater analysis, (pp. 75–89). 3rd ed. Wiley: VCH Verlag, https://doi.org/10.1002/9783527613984.ch4
- Parsons, T. R., Maita, Y., & Lalli, C. M. (Ed.) (1984). A manual of chemical and biological methods for seawater analysis. Oxford (UK): Pergamon Press.
- Postel, L., Fock, H., & Hagen, W. (2000). Collecting zooplankton. In R. Harris, P. Wiebe, H.R. Skjoldal, M. Huntley (Ed). ICES Zooplankton methodology manual, (pp. 53–81). London (UK): Academic Press.
- Petipa, T. S. (1957). On average weight of the main zooplankton forms in the Black Sea. Proceedings of Sevastopol Biological Station, 9, 39–57. (in Russian).
- Niermann, U., Kideys, A. E., Besiktep,e S., Nicolae, B., Goubanova, A., Khoroshilov, V., Mikaelyan, A., Moncheva, S., Mutlu, E., Nezlin, N., Petruanu, A., Senichkina, L., Shiganova, T. (1995). An assessment of recent Phyto and Zooplankton investigations in the Black Sea and planning for future. Report on the meeting of Marine Biologists in Erdemli, Turkey, 20 February-3 March 1995. TU-Black Sea Project, NATO Science for Stability Program. M.E.T.U., Institute of Marine Sciences, Erdemli, İçel, Turkey; p. 100.
- Bradford-Grieve, J. M., Markhaseva, E. L., Rocha, C. E. F., & Abiahy, B. (1999). Copepoda. In D. Boltovskoy, (Ed), South Atlantic Zooplankton, (pp. 869–1098). Leiden: Backhuys Publishers.
- Conway, D. V. P., White, R. G., Hugues-Dit-Ciles, J., Gallienne, C. P., & Robins, D. B. (Ed.) (2003). Guide to the coastal and surface zooplankton of the south-western Indian Ocean. Plymouth: United Kingdom.
- Lazăr, L., Boicenco, L., Denga, Y., Tolun, L., & Kurt, G (Ed) (2021a). Anthropogenic pressures and impacts on the Black Sea coastal ecosystem. CD Press: Bucharest, Romania.
- Lazăr, L., Boicenco, L., Moncheva, S., Denga, Y., & Atabay, H. et al. (Ed.) (2021b). Impact of the rivers on the Black Sea Ecosystem. CD Press: Bucharest, Romania.
- Calbet, A., Garrido, S., Saiz, E., Alcaraz, M., & Duarte, C. M. (2001). Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. Journal of Plankton Research, 23(3), 319–331. https://doi.org/10.1093/plankt/23.3.319
- Tan, İ., Atabay, H., Mutlu, S., Tolun, L. G., Polat Beken, S. Ç. (2023). A comparison of the surface water quality in distinct areas of the southern Black Sea coast under various pressures. Research Square, 1–12. https://doi.org/10.21203/rs.3.rs-3100718/v1
- Rekik, A., Guermazi, W., Kmiha-Megdiche, S., Sellami, I., Pagano, M., Ayadi, H., & Elloumi, J. (2023). Spatial variation of summer microphytoplankton and zooplankton communities related to environmental parameters in the coastal area of Djerba Island (Tunisia, Eastern Mediterranean). Mediterranean Marine Science, 24(1), 156–172. https://doi.org/10.12681/mms.30650
- Üstün, F., Bat, L., & Mutlu, E. (2018). Seasonal variation and taxonomic composition of mesozooplankton in the Southern Black Sea (off Sinop) between 2005 and 2009. Turkish Journal of Zoology, 42(5), 541–556. http://dx.doi.org/10.3906/zoo-1801-13
- Bişinicu, E., Lazăr, L., & Timofte, F. (2023a). Dynamics of zooplankton along the Romanian Black Sea coastline: Temporal variation, community structure, and environmental drivers. Diversity, 15(9), 1024. https://doi.org/10.3390/d15091024
- Besiktepe, S. (2001). Diel vertical distribution, and herbivory of copepods in the south-western part of the Black Sea. Journal of Marine Systems, 28(3–4), 281–301. https://doi.org/10.1016/S0924-7963(01)00029-X
- Yıldız, İ., & Feyzioğlu, A. M. (2014). Biological diversity and seasonal variation of mesozooplankton in the southeastern Black Sea coastal ecosystem. Turkish Journal of Zoology, 38(2), 179–190. https://doi.org/10.3906/zoo-1304-32
- Üstün, F. (2019). Seasonal cycle of zooplankton abundance and biomass in Hamsilos Bay, Sinop, southern Black Sea, Turkey. Journal of Natural History, 53(7–8), 365–389. https://doi.org/10.1080/00222933.2019.1592257
- Prusova, I. Yu., & Galagovets, E. A. (2022). Sex ratios of calanoid copepods in the northern Black Sea. Regional Studies in Marine Science, 55, 102576. https://doi.org/10.1016/j.rsma.2022.102576
- Bişinicu, E., Harcota, G. E., & Lazăr, L. (2023b). Interactions between environmental factors and the mesozooplankton community from the Romanian Black Sea waters. Turkish Journal of Zoology, 47(4), 202–2015. https://doi.org/10.55730/1300-0179.3133
- Gülşahin, N., & Tarkan, A. N. (2012). Seasonal changes in distribution and abundance of the cladoceran species in relation to environmental factors in Gökova Bay (Muğla, Aegean Sea, Turkey). Fresenius Environmental Bulletin, 21(7a), 1853–1863.
- Bedikoğlu, D., Yilmaz, I. N., & Demirel, N. (2022). Reproductive strategies and population characteristics of key Cladocera species in the Sea of Marmara. Regional Studies in Marine Science, 54, 102450. https://doi.org/10.1016/j.rsma.2022.102450
- Marazzo, A., & Valentin, J. L. (2000). A report on the marine cladoceran Evadne spinifera Müller (Crustacea, Branchiopoda) in Guanabara Bay, Rio de Janeiro, Brazil. Revista brasileira de Zoologia, 17(4), 1101–1102.
- Marazzo, A., & Valentin, J. L. (2001). Spatial and temporal variations of Penilia avirostris and Evadne tergestina (Crustacea, Branchiopoda) in a Tropical Bay, Brazil. Hydrobiologia, 445(1–3), 133–139. https://doi.org/10.1023/A:1017592323388
- Lebedeva, L. P., Lukasheva, T. A., Anokhina, L. L., & Chasovnikov, V. K. (2015). Interannual variability in the zooplankton community in Golubaya Bay (Northeastern part of the Black Sea) in 2002–2012. Oceanology, 55(3), 355–363. https://doi.org/10.1134/S0001437015030091
- Vereshchaka, A. L., Anokhina, L. L., Lukasheva, T. A., & Lunina, A. A. (2019). Long-term studies reveal major environmental factors driving zooplankton dynamics and periodicities in the Black Sea coastal zooplankton. PeerJ, 7, e7588. https://doi.org/10.7717/peerj.7588
- Kirchner, M., Sahling, G., Uhlig, G., Gunkel, W., & Klings, K. W. (1996). Does the red tide-forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia, 81(1), 45–55. https://doi.org/10.1080/00364827.1996.10413610
- Mikaelyan, A. S., Malej, A., Shiganova, T. A., Turk, V., Sivkovitch, A. E., Musaeva, E. I., Kogovsek, T., & Lukasheva, T. A. (2014). Populations of the red tide forming dinoflagellate Noctiluca scintillans (Macartney): A comparison between the Black Sea and the northern Adriatic Sea. Harmful Algae, 33, 29–40. http://dx.doi.org/10.1016/j.hal.2014.01.004
- Oguz, T., & Velikova, V. (2010). Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Marine Ecology Progress Series, 405, 231–242. https://doi.org/10.3354/meps08538
- Nikishina, A. B., Drits, A. V., Vasilyeva, Yu. V., Timonin, A. G., Solovyev, K. A., Ratkova, T. N., & Sergeeva, V. M. (2011). Role of the Noctiluca scintillans population in the trophic dynamics of the Black Sea plankton over the spring period. Oceanology, 51(6), 1029–1039. https://doi.org/10.1134/S0001437011060129
- Aytan, Ü., & Şentürk, Y. (2018) Dynamics of Noctiluca scintillans (Macartney) Kofoid & Swezy and its contribution to mesozooplankton in the southeastern Black Sea. Aquatic Sciences and Engineering, 33(3), 84–89. https://doi.org/10.26650/ASE201814
- Oguz, T., Malanotte-Rizzoli, P., & Ducklow, H. W. (2001). Simulations of phytoplankon seasonal cycle with multi-level and multi-layer physical-ecosystem models: the Black Sea example. Ecological Modelling, 144(2–3), 295–314. https://doi.org/10.1016/S0304-3800(01)00378-7
- Kopuz, U., Feyzioglu, A. M., & Valente, A. (2014). An unusual red-tide event of Noctiluca scintillans (Macartney) in the southeastern Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 14(1), 261–268. http://doi.org/10.4194/1303-2712-v14_1_28 (in Turkish)
- Belmonte, G., & Rubino, F. (2019). Resting cysts from coastal marine plankton. Oceanography and Marine Biology, 57, 1 – 88.