Research Article
BibTex RIS Cite

Al-Ni İntermetalik Bileşiklerinin Gama Radyasyonu Zırhlama Parametrelerinin Hesaplanması

Year 2024, Volume: 9 Issue: 2, 287 - 301, 29.12.2024
https://doi.org/10.33484/sinopfbd.1471890

Abstract

Bu çalışmada yüksek mukavemet, düşük özgül ağırlık, termal stabilite, yüksek termal iletkenlik (76 W/mK) ve oksidasyon/korozyon direnci gibi sahip oldukları fiziksel özelliklerle nükleer uygulamalar için potansiyel barındıran Al-Ni intermetalik bileşiklerinin (Al3Ni, Al3Ni2, Al4Ni3, AlNi, Al3Ni5 ve AlNi3) radyasyon zırhlama özellikleri incelendi. WinXCom programı ile 1 keV - 105 MeV aralığında, PHITS ve GEANT4 programları ile 0.047 – 2.506 MeV aralığındaki foton enerjileri için yapılan hesaplamalarla kütle soğurma katsayıları, lineer soğurma katsayıları, yarı kalınlık değerleri (YKD), onda bir kalınlık değerleri (OKD), ortalama serbest yolları (MFP) ve etkin atom numaraları elde edildi. Seçilen enerji aralığında her üç programla da elde edilen sonuçların iyi bir uyum içerisinde oldukları tespit edildi. İntermetalik bileşiğin yoğunluğunun artmasıyla, kütle soğurma katsayısı ve etkin atom numaraları değerlerinin arttığı, YKD, OKD ve OSY değerlerinin ise azaldığı görüldü.
Hesaplanan parametreler incelenerek Al-Ni intermetalik bileşiklerinin literatürde zırhlama malzemesi olarak önerilen diğer malzemelerle karşılaştırıldığında daha düşük zırhlama kapasitesine sahip olsa da radyasyon zırhlama için yeterli düzeyde olduğu ve AlNi3 bileşiğinin diğer bileşiklere oranla gama zırhlama için daha uygun bir aday olduğu tespit edildi.

Ethical Statement

-

Supporting Institution

Yok

Thanks

-

References

  • Li, T., Wang, D., Zhang, S., & Wang, J. (2023). Corrosion behavior of high entropy alloys and their application in the nuclear industry—An overview. Metals, 13(2), 363. https://doi.org/10.3390/met13020363
  • Simon, A., Barradas, N. P., Jeynes, C., & Romolo, F. S. (2023). Addressing forensic science challenges with nuclear analytical techniques – A review. Forensic Science International, 358 111767. https://doi.org/10.1016/J.FORSCIINT.2023.111767
  • Daneshvar, H., Milan, K. G., Sadr, A., Sedighy, S. H., Malekie, S., & Mosayebi, A. (2021). Multilayer radiation shield for satellite electronic components protection. Scientific Reports, 11(1), 20657. https://doi.org/10.1038/s41598-021-99739-2
  • Jecong, J. F. M., Hila, F. C., Balderas, C. V., & Guillermo, N. R. D. (2022). Effect of the new photoatomic data library EPDL2017 to mass attenuation coefficient calculation of materials used in the nuclear medicine facilities using EpiXS software. Nuclear Engineering and Technology, 54(9), 3440–3447. https://doi.org/10.1016/J.NET.2022.03.030
  • Kaçal, M. R., Akman, F., & Sayyed, M. I. (2019). Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nuclear Engineering and Technology, 51(3), 818–824. https://doi.org/10.1016/J.NET.2018.11.011
  • Yilmaz, M., Erkoyuncu, İ., Gürel Özdemir, H., Demirkol, İ., Kaçal, M. R., & Akman, F. (2023). Bizmut tabanlı bazı alaşımların radyasyon zırhlama kapasitelerinin incelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 92–105. https://doi.org/10.53433/YYUFBED.1140507
  • Aygün, Z., & Aygün, M. (2022). Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. Journal of Polytechnic, 26(2), 795-801. https://doi.org/10.2339/politeknik.1004657
  • Ekinci, N., Alsaif, N. A. M., Aygün, B., Sarıtaş, S., Kalecik, S., & Rammah, Y. S. (2023). Assessment of structural, physical properties as well as radiation safety competence of lithium borate glass-ceramics: Experimental and theoretical evaluation. Physica Scripta, 98(4), 045004. https://doi.org/10.1088/1402-4896/ACBEEF
  • Kavaz, E., El-Agawany, F. I., Tekin, H. O., Perişanoğlu, U., & Rammah, Y. S. (2020). Nuclear radiation shielding using barium borosilicate glass ceramics. Journal of Physics and Chemistry of Solids, 142, 109437. https://doi.org/10.1016/J.JPCS.2020.109437
  • Kavaz, E., Tekin, H. O., Yorgun, N. Y., Özdemir, F., & Sayyed, M. I. (2019). Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: Experimental and Monte Carlo study. Radiation Physics and Chemistry, 162, 187–193. https://doi.org/10.1016/j.radphyschem.2019.05.019
  • Yildiz Yorgun, N., Kavaz, E., Tekin, H. O., Sayyed, M. I., & Özdemir, F. (2019). Borax effect on gamma and neutron shielding features of lithium borate glasses: An experimental and Monte Carlo studies. Materials Research Express, 6(11). https://doi.org/10.1088/2053-1591/ab4fcc
  • Aygün, B., Şakar, E., Agar, O., Sayyed, M. I., Karabulut, A., & Singh, V. P. (2021). Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications. Progress in Nuclear Energy, 133, 103645. https://doi.org/10.1016/J.PNUCENE.2021.103645
  • Kilicoglu, O., More, C. V., Kara, U., & Davraz, M. (2023). Investigation of the effect of cement type on nuclear shield performance of heavy concrete. Radiation Physics and Chemistry, 209, 110954. https://doi.org/10.1016/J.RADPHYSCHEM.2023.110954
  • Stoloff, N. S., Liu, C. T., & Deevi, S. C. (2000). Emerging applications of intermetallics. Intermetallics, 8(9–11), 1313–1320. https://doi.org/10.1016/S0966-9795(00)00077-7
  • Liu, C. T. (1995). Recent advances in ordered intermetallics. Materials Chemistry and Physics, 42(2), 77–86. https://doi.org/10.1016/0254-0584(95)01546-9
  • Jogdand, H., Gulsoy, G., Ando, T., Chen, J., Doumanidis, C. C., Gu, Z., Rebholz, C., & Wong, P.. (2008). Fabrication and characterization of nanoscale heating sources (“Nanoheaters”) for nanomanufacturing. TechConnect Briefs, 1, 280–283.
  • Kaplin, C., Ivanov, R., Paliwal, M., Jung, I. H., & Brochu, M. (2014). The effect of nanostructure on the oxidation of NiAl. Intermetallics, 54, 209–217. https://doi.org/10.1016/J.INTERMET.2014.06.013
  • Awotunde, M. A., Ayodele, O. O., Adegbenjo, A. O., Okoro, A. M., Shongwe, M. B., & Olubambi, P. A. (2019). NiAl intermetallic composites—a review of processing methods, reinforcements and mechanical properties. International Journal of Advanced Manufacturing Technology, 104(5–8), 1733–1747. https://doi.org/10.1007/S00170-019-03984-9/FIGURES/13
  • Zhilin, S. G., Predein, V. V., & Komarov, O. N. (2023). Industrial use of high-strength intermetallic compounds based on aluminides and prospects for extending scope of their application. Metallurgist, 66(9–10), 1114–1126. https://doi.org/10.1007/S11015-023-01424-4/METRICS
  • Sampath, S., Ravi, V. P., & Sundararajan, S. (2023). An overview on synthesis, processing and applications of nickel aluminides: from fundamentals to current prospects. Crystals, 13(3), 435. https://doi.org/10.3390/cryst13030435
  • Ward-Close, C. M., Minor, R., & Doorbar, P. J. (1996). Intermetallic-matrix composites—a review. Intermetallics, 4(3), 217–229. https://doi.org/10.1016/0966-9795(95)00037-2
  • Sikka, V. K., Deevi, S. C., Viswanathan, S., Swindeman, R. W., & Santella, M. L. (2000). Advances in processing of Ni3Al-based intermetallics and applications. Intermetallics, 8(9–11), 1329–1337. https://doi.org/10.1016/S0966-9795(00)00078-9
  • Dey, G. K. (2003). Physical metallurgy of nickel aluminides. Sadhana - Academy Proceedings in Engineering Sciences, 28(1–2), 247–262. https://doi.org/10.1007/BF02717135/METRICS
  • Shi, D., Wen, B., Melnik, R., Yao, S., & Li, T. (2009). First-principles studies of Al-Ni intermetallic compounds. Journal of Solid State Chemistry, 182(10), 2664–2669. https://doi.org/10.1016/j.jssc.2009.07.026
  • Bochenek, K., & Basista, M. (2015). Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Progress in Aerospace Sciences, 79, 136–146. https://doi.org/10.1016/J.PAEROSCI.2015.09.003
  • Alzahrani, J. S., Alrowaili, Z. A., Saleh, H. H., Hammoud, A., Alomairy, S., Sriwunkum, C., & Al-Buriahi, M. S. (2021). Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. Progress in Nuclear Energy, 142, 103992. https://doi.org/10.1016/J.PNUCENE.2021.103992
  • Sayyed, M. I., Mohammed, F. Q., Mahmoud, K. A., Lacomme, E., Kaky, K. M., Khandaker, M. U., & Faruque, M. R. I. (2020). Evaluation of radiation shielding features of Co and Ni-based superalloys using MCNP-5 code: potential use in nuclear safety. Applied Sciences, 10(21), 7680. https://doi.org/10.3390/APP10217680
  • Almuqrin, A. H., Jecong, J. F. M., Hila, F. C., Balderas, C. V., & Sayyed, M. I. (2021). Radiation shielding properties of selected alloys using EPICS2017 data library. Progress in Nuclear Energy, 137, 103748. https://doi.org/10.1016/j.pnucene.2021.103748
  • Yıldırım, S., Tugrul, A. B., Buyuk, B., & Demir, E. (2016). Gamma attenuation properties of some aluminum alloys. Acta Physica Polonica A, 129(4), 813–815. https://doi.org/10.12693/APhysPolA.129.813
  • El-Mesady, I. A., Hussein, A. E., Semary, M. M., & Othman, S. M. (2023). Investigation of the mechanical properties, shielding parameters and flux distribution in borate - Based glass system using PHITS code; a simulation study. Optical Materials, 138, 113699. https://doi.org/10.1016/j.optmat.2023.113699
  • Alzahrani, J. S., Alothman, M. A., Eke, C., Al-Ghamdi, H., Aloraini, D. A., & Al-Buriahi, M. S. (2021). Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Computational Materials Science, 196, 110566. https://doi.org/10.1016/J.COMMATSCI.2021.110566
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3–4), 653–654. https://doi.org/10.1016/J.RADPHYSCHEM.2004.04.040
  • Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuya, Y., Matsuda, N., Hirata, Y., Sekikawa, T., Yao, L., Tsai, P., Ratliff, H. N., Iwase, H., Sakaki, Y., Sugihara, K., Shigyo, N., Sihver, L., & Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. Journal of Nuclear Science and Technology, 61(1), 127–135. https://doi.org/10.1080/00223131.2023.2275736
  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., . . . Zschiesche, D. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/s0168-9002(03)01368-8
  • Cirrone, G. A. P., Cuttone, G., Di Rosa, F., Pandola, L., Romano, F., & Zhang, Q. (2010). Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds. Nuclear Instruments and Methods in Physics Research A, 618, 315-322. https://doi.org/10.1016/j.nima.2010.02.112
  • Kuttukaran, S. S., Ambika, M. R., Malathi, C., & Nagaiah, N. (2023). DMSO-Bismuth polymer composite as gamma radiation shield – A computational study. Materials Today: Proceedings, 89, 75–83. https://doi.org/10.1016/J.MATPR.2023.05.398
  • Manohara, S. R., Hanagodimath, S. M., Thind, K. S., & Gerward, L. (2008). On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(18), 3906–3912. https://doi.org/10.1016/J.NIMB.2008.06.034

Calculation of Gamma Radiation Shielding Parameters of Al-Ni Intermetallic Compounds

Year 2024, Volume: 9 Issue: 2, 287 - 301, 29.12.2024
https://doi.org/10.33484/sinopfbd.1471890

Abstract

In this study, the radiation shielding properties of Al-Ni intermetallic compounds (Al3Ni, Al3Ni2, Al4Ni3, AlNi, Al3Ni5 and AlNi3), which have potential for nuclear applications due to their physical properties such as high strength, low density, thermal stability, high thermal conductivity (76 W/mK) and oxidation/corrosion resistance, were investigated. Mass absorption coefficients, linear absorption coefficients, half thickness values (HVL), tenths thickness values (TVL), mean free paths (MFP) and effective atomic numbers were obtained by calculations for photon energies in the range of 1 keV -105 MeV with WinXCom program and 0.047 - 2.506 MeV with PHITS and GEANT4 programs. It was found that the results obtained with all three programs were in good agreement in the selected energy range. It was observed that the values of the mass absorption coefficient and effective atomic numbers increased with increasing density of the intermetallic compound, whereas the values of the HVL, TVL and MFP decreased.
By examining the calculated parameters, it was determined that Al-Ni intermetallic compounds have lower armoring capacity compared to other materials proposed as armoring materials in the literature, but they are sufficient for radiation shielding and AlNi3 compound is a more suitable candidate for gamma shielding compared to other compounds.

References

  • Li, T., Wang, D., Zhang, S., & Wang, J. (2023). Corrosion behavior of high entropy alloys and their application in the nuclear industry—An overview. Metals, 13(2), 363. https://doi.org/10.3390/met13020363
  • Simon, A., Barradas, N. P., Jeynes, C., & Romolo, F. S. (2023). Addressing forensic science challenges with nuclear analytical techniques – A review. Forensic Science International, 358 111767. https://doi.org/10.1016/J.FORSCIINT.2023.111767
  • Daneshvar, H., Milan, K. G., Sadr, A., Sedighy, S. H., Malekie, S., & Mosayebi, A. (2021). Multilayer radiation shield for satellite electronic components protection. Scientific Reports, 11(1), 20657. https://doi.org/10.1038/s41598-021-99739-2
  • Jecong, J. F. M., Hila, F. C., Balderas, C. V., & Guillermo, N. R. D. (2022). Effect of the new photoatomic data library EPDL2017 to mass attenuation coefficient calculation of materials used in the nuclear medicine facilities using EpiXS software. Nuclear Engineering and Technology, 54(9), 3440–3447. https://doi.org/10.1016/J.NET.2022.03.030
  • Kaçal, M. R., Akman, F., & Sayyed, M. I. (2019). Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nuclear Engineering and Technology, 51(3), 818–824. https://doi.org/10.1016/J.NET.2018.11.011
  • Yilmaz, M., Erkoyuncu, İ., Gürel Özdemir, H., Demirkol, İ., Kaçal, M. R., & Akman, F. (2023). Bizmut tabanlı bazı alaşımların radyasyon zırhlama kapasitelerinin incelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 92–105. https://doi.org/10.53433/YYUFBED.1140507
  • Aygün, Z., & Aygün, M. (2022). Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. Journal of Polytechnic, 26(2), 795-801. https://doi.org/10.2339/politeknik.1004657
  • Ekinci, N., Alsaif, N. A. M., Aygün, B., Sarıtaş, S., Kalecik, S., & Rammah, Y. S. (2023). Assessment of structural, physical properties as well as radiation safety competence of lithium borate glass-ceramics: Experimental and theoretical evaluation. Physica Scripta, 98(4), 045004. https://doi.org/10.1088/1402-4896/ACBEEF
  • Kavaz, E., El-Agawany, F. I., Tekin, H. O., Perişanoğlu, U., & Rammah, Y. S. (2020). Nuclear radiation shielding using barium borosilicate glass ceramics. Journal of Physics and Chemistry of Solids, 142, 109437. https://doi.org/10.1016/J.JPCS.2020.109437
  • Kavaz, E., Tekin, H. O., Yorgun, N. Y., Özdemir, F., & Sayyed, M. I. (2019). Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: Experimental and Monte Carlo study. Radiation Physics and Chemistry, 162, 187–193. https://doi.org/10.1016/j.radphyschem.2019.05.019
  • Yildiz Yorgun, N., Kavaz, E., Tekin, H. O., Sayyed, M. I., & Özdemir, F. (2019). Borax effect on gamma and neutron shielding features of lithium borate glasses: An experimental and Monte Carlo studies. Materials Research Express, 6(11). https://doi.org/10.1088/2053-1591/ab4fcc
  • Aygün, B., Şakar, E., Agar, O., Sayyed, M. I., Karabulut, A., & Singh, V. P. (2021). Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications. Progress in Nuclear Energy, 133, 103645. https://doi.org/10.1016/J.PNUCENE.2021.103645
  • Kilicoglu, O., More, C. V., Kara, U., & Davraz, M. (2023). Investigation of the effect of cement type on nuclear shield performance of heavy concrete. Radiation Physics and Chemistry, 209, 110954. https://doi.org/10.1016/J.RADPHYSCHEM.2023.110954
  • Stoloff, N. S., Liu, C. T., & Deevi, S. C. (2000). Emerging applications of intermetallics. Intermetallics, 8(9–11), 1313–1320. https://doi.org/10.1016/S0966-9795(00)00077-7
  • Liu, C. T. (1995). Recent advances in ordered intermetallics. Materials Chemistry and Physics, 42(2), 77–86. https://doi.org/10.1016/0254-0584(95)01546-9
  • Jogdand, H., Gulsoy, G., Ando, T., Chen, J., Doumanidis, C. C., Gu, Z., Rebholz, C., & Wong, P.. (2008). Fabrication and characterization of nanoscale heating sources (“Nanoheaters”) for nanomanufacturing. TechConnect Briefs, 1, 280–283.
  • Kaplin, C., Ivanov, R., Paliwal, M., Jung, I. H., & Brochu, M. (2014). The effect of nanostructure on the oxidation of NiAl. Intermetallics, 54, 209–217. https://doi.org/10.1016/J.INTERMET.2014.06.013
  • Awotunde, M. A., Ayodele, O. O., Adegbenjo, A. O., Okoro, A. M., Shongwe, M. B., & Olubambi, P. A. (2019). NiAl intermetallic composites—a review of processing methods, reinforcements and mechanical properties. International Journal of Advanced Manufacturing Technology, 104(5–8), 1733–1747. https://doi.org/10.1007/S00170-019-03984-9/FIGURES/13
  • Zhilin, S. G., Predein, V. V., & Komarov, O. N. (2023). Industrial use of high-strength intermetallic compounds based on aluminides and prospects for extending scope of their application. Metallurgist, 66(9–10), 1114–1126. https://doi.org/10.1007/S11015-023-01424-4/METRICS
  • Sampath, S., Ravi, V. P., & Sundararajan, S. (2023). An overview on synthesis, processing and applications of nickel aluminides: from fundamentals to current prospects. Crystals, 13(3), 435. https://doi.org/10.3390/cryst13030435
  • Ward-Close, C. M., Minor, R., & Doorbar, P. J. (1996). Intermetallic-matrix composites—a review. Intermetallics, 4(3), 217–229. https://doi.org/10.1016/0966-9795(95)00037-2
  • Sikka, V. K., Deevi, S. C., Viswanathan, S., Swindeman, R. W., & Santella, M. L. (2000). Advances in processing of Ni3Al-based intermetallics and applications. Intermetallics, 8(9–11), 1329–1337. https://doi.org/10.1016/S0966-9795(00)00078-9
  • Dey, G. K. (2003). Physical metallurgy of nickel aluminides. Sadhana - Academy Proceedings in Engineering Sciences, 28(1–2), 247–262. https://doi.org/10.1007/BF02717135/METRICS
  • Shi, D., Wen, B., Melnik, R., Yao, S., & Li, T. (2009). First-principles studies of Al-Ni intermetallic compounds. Journal of Solid State Chemistry, 182(10), 2664–2669. https://doi.org/10.1016/j.jssc.2009.07.026
  • Bochenek, K., & Basista, M. (2015). Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Progress in Aerospace Sciences, 79, 136–146. https://doi.org/10.1016/J.PAEROSCI.2015.09.003
  • Alzahrani, J. S., Alrowaili, Z. A., Saleh, H. H., Hammoud, A., Alomairy, S., Sriwunkum, C., & Al-Buriahi, M. S. (2021). Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. Progress in Nuclear Energy, 142, 103992. https://doi.org/10.1016/J.PNUCENE.2021.103992
  • Sayyed, M. I., Mohammed, F. Q., Mahmoud, K. A., Lacomme, E., Kaky, K. M., Khandaker, M. U., & Faruque, M. R. I. (2020). Evaluation of radiation shielding features of Co and Ni-based superalloys using MCNP-5 code: potential use in nuclear safety. Applied Sciences, 10(21), 7680. https://doi.org/10.3390/APP10217680
  • Almuqrin, A. H., Jecong, J. F. M., Hila, F. C., Balderas, C. V., & Sayyed, M. I. (2021). Radiation shielding properties of selected alloys using EPICS2017 data library. Progress in Nuclear Energy, 137, 103748. https://doi.org/10.1016/j.pnucene.2021.103748
  • Yıldırım, S., Tugrul, A. B., Buyuk, B., & Demir, E. (2016). Gamma attenuation properties of some aluminum alloys. Acta Physica Polonica A, 129(4), 813–815. https://doi.org/10.12693/APhysPolA.129.813
  • El-Mesady, I. A., Hussein, A. E., Semary, M. M., & Othman, S. M. (2023). Investigation of the mechanical properties, shielding parameters and flux distribution in borate - Based glass system using PHITS code; a simulation study. Optical Materials, 138, 113699. https://doi.org/10.1016/j.optmat.2023.113699
  • Alzahrani, J. S., Alothman, M. A., Eke, C., Al-Ghamdi, H., Aloraini, D. A., & Al-Buriahi, M. S. (2021). Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Computational Materials Science, 196, 110566. https://doi.org/10.1016/J.COMMATSCI.2021.110566
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3–4), 653–654. https://doi.org/10.1016/J.RADPHYSCHEM.2004.04.040
  • Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuya, Y., Matsuda, N., Hirata, Y., Sekikawa, T., Yao, L., Tsai, P., Ratliff, H. N., Iwase, H., Sakaki, Y., Sugihara, K., Shigyo, N., Sihver, L., & Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. Journal of Nuclear Science and Technology, 61(1), 127–135. https://doi.org/10.1080/00223131.2023.2275736
  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., . . . Zschiesche, D. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/s0168-9002(03)01368-8
  • Cirrone, G. A. P., Cuttone, G., Di Rosa, F., Pandola, L., Romano, F., & Zhang, Q. (2010). Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds. Nuclear Instruments and Methods in Physics Research A, 618, 315-322. https://doi.org/10.1016/j.nima.2010.02.112
  • Kuttukaran, S. S., Ambika, M. R., Malathi, C., & Nagaiah, N. (2023). DMSO-Bismuth polymer composite as gamma radiation shield – A computational study. Materials Today: Proceedings, 89, 75–83. https://doi.org/10.1016/J.MATPR.2023.05.398
  • Manohara, S. R., Hanagodimath, S. M., Thind, K. S., & Gerward, L. (2008). On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(18), 3906–3912. https://doi.org/10.1016/J.NIMB.2008.06.034
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Ömer Faruk Özdemir 0000-0002-2389-1139

Nergiz Yıldız Yorgun 0000-0002-2515-1994

Publication Date December 29, 2024
Submission Date April 22, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Özdemir, Ö. F., & Yıldız Yorgun, N. (2024). Al-Ni İntermetalik Bileşiklerinin Gama Radyasyonu Zırhlama Parametrelerinin Hesaplanması. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(2), 287-301. https://doi.org/10.33484/sinopfbd.1471890


Articles published in Sinopjns are licensed under CC BY-NC 4.0.