Research Article
BibTex RIS Cite

Dairesel Türbülatörler ile Asimetrik Trapez Dalgalı bir Kanalda Termohidrolik Performans Analizi

Year 2025, Volume: 10 Issue: 1, 149 - 164, 29.06.2025
https://doi.org/10.33484/sinopfbd.1631618

Abstract

Bu çalışma, içerisine dairesel türbülatörler yerleştirilmiş asimetrik trapez dalgalı bir kanalda türbülanslı akışın ısı transferini analiz etmektedir. Çözümlerde, ANSYS Fluent programı kullanılmıştır. Çözümlerde, standart k-ε türbülans modeli kullanılmıştır. Dairesel türbülatörler kanal içine 3 farklı çapta (d: 2 mm, 4 mm, 6 mm) ve 3 farklı konumda (t: 7 mm, 9 mm ve 11 mm) yerleştirilmiş ve her birinin akış ve ısı transferi üzerindeki etkileri incelenmiştir. Çalışmada, Reynolds sayısı 3000≤Re≤10000 aralığında değiştirilmiş ve kanalın asimetrik dalgalı yüzeyleri TS=340 K sıcaklığında sabit tutulmuştur. Kanal içine farklı çap ve konumlarda yerleştirilen türbülatörler için farklı Reynolds sayılarında Nusselt sayısı (Nu), iyileşme oranı (η), basınç düşüşü (ΔP) ve termohidrolik performans (THP) değerleri hesaplanmıştır. Ayrıca elde edilen sonuçlar, türbülatörlerin olmadığı asimetrik trapez dalgalı kanal ile karşılaştırılmıştır. Çalışma sonucunda, farklı parametrelerde kanal içinde hız ve sıcaklık görüntüleri sunulmuştur. Bulgular, türbülatör çapının ve konumunun basınç düşüşünü ve ısı transferini etkilediğini göstermiştir. Re=10000, d=6 mm ve t=7 mm parametreleri için ısı transferinin türbülatörsüz kanala göre 1.31 kat iyileştiği tespit edilmiştir. En yüksek termohidrolik performans Re=3000, d=6 mm ve t=11 mm durumunda THP=1.14 olarak bulunmuştur.

Supporting Institution

TÜBİTAK

Project Number

Proje No: 1919B012319076, 2209A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı, 2023-2

References

  • Murshed, S. M. S., & Nieto de Castro C. A. (2017). A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable and Sustainable Energy Reviews, 78, 821–833. https://doi.org/10.1016/j.rser.2017.04.112
  • Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., & Urchueguia, J. F. (2022). A review of recent passive heat transfer enhancement methods. Energies, 15(3), 986. https://doi.org/10.3390/en15030986
  • Zhang, J., Zhu, X., Mondejar, M. E., & Haglind, F. (2019). A review of heat transfer enhancement techniques in plate heat exchangers. Renewable and Sustainable Energy Reviews, 101, 305-328. https://doi.org/10.1016/j.rser.2018.11.017
  • Alam, T., & Kim, M. H. (2018). A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renewable and Sustainable Energy Reviews, 81, 813-839. https://doi.org/10.1016/j.rser.2017.08.060
  • Kurtulmuş, N., Zontul, H., & Sahin, B. (2020). Heat transfer and flow characteristics in a sinusoidally curved converging-diverging channel. International Journal of Thermal Sciences, 148, 106163. https://doi.org/10.1016/j.ijthermalsci.2019.106163
  • Kurtulmus, N., & Sahin, B. (2019). A review of hydrodynamics and heat transfer through corrugated channels. International Communications in Heat and Mass Transfer, 108, 104307. https://doi.org/10.1016/j.icheatmasstransfer.2019.104307
  • Kumar, K., Kumar, R., Bharj, R. S., & Mondal, P. K. (2021). Irreversibility analysis of the convective flow through corrugated channels: A comprehensive review. European Physical Journal Plus, 136(4), 1–40. https://doi.org/10.1140/epjp/s13360-021-01388-x
  • Alfellag, M. A., Ahmed, H. E., Jehad, M. G., & Farhan, A. A. (2022). The hydrothermal performance enhancement techniques of corrugated channels: A review. Journal of Thermal Analysis and Calorimetry, 147, 10177-10206. https://doi.org/10.1007/s10973-022-11247-1
  • Sharma, A. & Khan, M. K. (2023). Heat transfer and flow characteristics of varying curvature wavy microchannels. International Journal of Thermal Sciences, 185, 108096. https://doi.org/10.1016/j.ijthermalsci.2022.108096
  • Krishnan, E. N., Ramin, H., Guruabalan, A., & Simonson, C. J. (2021). Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages. International Communications in Heat and Mass Transfer, 122, 105160. https://doi.org/10.1016/j.icheatmasstransfer.2021.105160
  • Li, Z-X., Sung, S-Q., Wang, C., Liang, C-H., Zeng, S., Zhong, T., Hud, W-P., & Feng, C-N. (2022). The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct. Case Studies in Thermal Engineering, 33, 101903. https://doi.org/10.1016/j.csite.2022.101903
  • Zontul, H., Hamzah, H., Kurtulmuş, N., & Şahin, B. (2021). Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels. International Communications in Heat and Mass Transfer, 126, 105366. https://doi.org/10.1016/j.icheatmasstransfer.2021.105366
  • Nakhchi, M. E. (2019). Experimental optimization of geometrical parameters on heat transfer and pressure drop inside sinusoidal wavy channels. Thermal Science and Engineering Progress, 9, 121–131. https://doi.org/10.1016/j.tsep.2018.11.006
  • Liu, X., Fu, Y., Wang, J., Zhang, H., & Zhu, J. (2022). Investigation on flow and heat transfer in rectangular cross-section sinusoidal channels. International Journal of Thermal Sciences, 176, 107490. https://doi.org/10.1016/j.ijthermalsci.2022.107490
  • Togun, H., Homod, R. Z., Yaseen, Z. M., Abed, A. M., Dhabab, J. M., Ibrahem, R. K., Dhahbi, S., Rashidi, M. M., Ahmadi, G., Yaïci, W. A., & Mahdi, J. M. (2022). Efficient heat transfer augmentation in channels with semicircle ribs and hybrid Al2O3-Cu/water nanofluids. Nanomaterials, 12(15), 2720. https://doi.org/10.3390/nano12152720
  • Akcay, S. (2023). Heat transfer analysis of pulsating nanofluid flow in a semicircular wavy channel with baffles. Sādhanā, 48, 57. https://doi.org/10.1007/s12046-023-02119-x
  • Ajeel, R. K., Sopian, K., & Zulkifli, R. (2021). A novel curved-corrugated channel model: thermal-hydraulic performance and design parameters with nanofluid. International Communications in Heat and Mass Transfer, 120, 105037. https://doi.org/10.1016/j.icheatmasstransfer.2020.105037
  • Uysal, D., & Akçay, S. (2024). Numerical study of thermal and hydrodynamic characteristics of turbulent flow in hybrid corrugated channels with different wave profiles. Journal of Mechanical Engineering and Sciences, 18(2), 10026–10045. https://doi.org/10.15282/jmes.18.2.2024.5.0792
  • Zhang, L., & Che, D. (2011). Influence of corrugation profile on the thermalhydraulic performance of cross-corrugated plates. Numerical Heat Transfer, Part A: Applications, 59 (4) 267–296. https://doi.org/10.1080/10407782.2011.540963
  • Ahmed, M., Yusoff, M., Ng, K., & Shuaib, N. (2014). Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid. Case Studies in Thermal Engineering, 4, 65-75. https://doi.org/10.1016/j.csite.2014.07.001
  • Salami, M., Khoshvaght-Aliabadi, M., & Feizabadi, A. (2019). Investigation of corrugated channel performance with different wave shapes. Journal of Thermal Analysis and Calorimetry, 138(5), 3159–3174. https://doi.org/10.1007/s10973-019-08361-y
  • Nitturi, L. K., Kapu, V. K. S., Gugulothu, R., Kaleru, A., Vuyyuri, V., & Farid, A. (2023). Augmentation of heat transfer through passive techniques. Heat Transfer, 52(6), 4422-4449. https://doi.org/10.1002/htj.22877
  • Kanchan, B. K., Chandan, G. K., & Kumar, J. (2024). Effect of obstacle configuration in sinusoidal bfsc on hydrothermal performance and irreversibility characteristics: A numerical study. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 48, 145–162. https://doi.org/10.1007/s40997-023-00649-7
  • Raza, A., Hasnain, J., Shah, S. S., Haq, R. U., & Alhushaybari, A. (2024). Influence of solid cylinders on fluid flow and thermal analysis in a curved channel with constant magnetic field. International Communications in Heat and Mass Transfer, 158, 107887. https://doi.org/10.1016/j.icheatmasstransfer.2024.107887
  • Zheng, Y., Yang, H., Mazaheri, H., Aghaei, A., Mokhtari, N., & Afrand, M. (2021). An investigation on the influence of the shape of the vortex generator on fluid flow and turbulent heat transfer of hybrid nanofluid in a channel. Journal of Thermal Analysis and Calorimetry, 143,1425–1438. https://doi.org/10.1007/s10973-020-09415-2
  • Naderifar, A., Nikian, M, Javaherdeh, K., & Borji, M. (2022). Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-newtonian nanofluid flow through a corrugated channel. Journal of Thermal Analysis and Calorimetry, 147, 9779-9791. https://doi.org/10.1007/s10973-022-11222-w
  • Akcay, S. (2023). Numerical study of turbulent heat transfer process in different wavy channels with solid and perforated baffles. Heat Transfer Research, 54(18), 53-82. https://doi.org/ 10.1615/HeatTransRes.2023046621
  • Acır, A., Ata, I., & Canlı, M. E. (2016). Investigation of effect of the circular ring turbulators on heat transfer augmentation and fluid flow characteristic of solar air heater. Experimental Thermal and Fluid Science, 77, 45-54. http://dx.doi.org/10.1016/j.expthermflusci.2016.04.012
  • Acır, A., & Ata, I. (2016). A study of heat transfer enhancement in a new solar air heater having circular type turbulators. Journal of the Energy Institute, 89, 606-616. http://dx.doi.org/10.1016/j.joei.2015.05.008

Thermohydraulic Performance Analysis in an Asymmetric Trapezoidal Wavy Channel with Circular Turbulators

Year 2025, Volume: 10 Issue: 1, 149 - 164, 29.06.2025
https://doi.org/10.33484/sinopfbd.1631618

Abstract

This numerical study analyzes the heat transfer of turbulent flow in an asymmetric trapezoidal wavy channel with circular turbulators. The ANSYS Fluent program was used for the solutions. The standard k-ε turbulence model was used in the solutions. Circular turbulators were placed in the channel with 3 different diameters (d: 2 mm, 4 mm, 6 mm) and 3 different positions (t: 7 mm, 9 mm, 11 mm) and the effects of each on the flow and heat transfer were investigated. In the study, the Reynolds number was changed in the range of 3000≤Re≤10000, and the asymmetric wavy surfaces of the channel were kept constant at TS=340 K. Nusselt number (Nu), enhancement ratio (η), pressure drop (ΔP), and thermohydraulic performance (THP) values were calculated for different Reynolds numbers, different turbulator diameters and positions in the channel. In addition, the results obtained were compared with the asymmetric trapezoidal wavy channel without turbulators. As a result of the study, velocity and temperature images were presented in the channel for different parameters. The findings showed that the turbulator diameter and position affect the pressure drop and heat transfer. It was found that for the parameters Re=10000, d=6 mm, and t=7 mm, the heat transfer was improved by 1.31 times compared to the channel without a turbulator. The highest thermohydraulic performance was found to be THP=1.14 for Re=3000, d=6 mm, and t=11 mm.

Project Number

Proje No: 1919B012319076, 2209A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı, 2023-2

References

  • Murshed, S. M. S., & Nieto de Castro C. A. (2017). A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable and Sustainable Energy Reviews, 78, 821–833. https://doi.org/10.1016/j.rser.2017.04.112
  • Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., & Urchueguia, J. F. (2022). A review of recent passive heat transfer enhancement methods. Energies, 15(3), 986. https://doi.org/10.3390/en15030986
  • Zhang, J., Zhu, X., Mondejar, M. E., & Haglind, F. (2019). A review of heat transfer enhancement techniques in plate heat exchangers. Renewable and Sustainable Energy Reviews, 101, 305-328. https://doi.org/10.1016/j.rser.2018.11.017
  • Alam, T., & Kim, M. H. (2018). A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renewable and Sustainable Energy Reviews, 81, 813-839. https://doi.org/10.1016/j.rser.2017.08.060
  • Kurtulmuş, N., Zontul, H., & Sahin, B. (2020). Heat transfer and flow characteristics in a sinusoidally curved converging-diverging channel. International Journal of Thermal Sciences, 148, 106163. https://doi.org/10.1016/j.ijthermalsci.2019.106163
  • Kurtulmus, N., & Sahin, B. (2019). A review of hydrodynamics and heat transfer through corrugated channels. International Communications in Heat and Mass Transfer, 108, 104307. https://doi.org/10.1016/j.icheatmasstransfer.2019.104307
  • Kumar, K., Kumar, R., Bharj, R. S., & Mondal, P. K. (2021). Irreversibility analysis of the convective flow through corrugated channels: A comprehensive review. European Physical Journal Plus, 136(4), 1–40. https://doi.org/10.1140/epjp/s13360-021-01388-x
  • Alfellag, M. A., Ahmed, H. E., Jehad, M. G., & Farhan, A. A. (2022). The hydrothermal performance enhancement techniques of corrugated channels: A review. Journal of Thermal Analysis and Calorimetry, 147, 10177-10206. https://doi.org/10.1007/s10973-022-11247-1
  • Sharma, A. & Khan, M. K. (2023). Heat transfer and flow characteristics of varying curvature wavy microchannels. International Journal of Thermal Sciences, 185, 108096. https://doi.org/10.1016/j.ijthermalsci.2022.108096
  • Krishnan, E. N., Ramin, H., Guruabalan, A., & Simonson, C. J. (2021). Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages. International Communications in Heat and Mass Transfer, 122, 105160. https://doi.org/10.1016/j.icheatmasstransfer.2021.105160
  • Li, Z-X., Sung, S-Q., Wang, C., Liang, C-H., Zeng, S., Zhong, T., Hud, W-P., & Feng, C-N. (2022). The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct. Case Studies in Thermal Engineering, 33, 101903. https://doi.org/10.1016/j.csite.2022.101903
  • Zontul, H., Hamzah, H., Kurtulmuş, N., & Şahin, B. (2021). Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels. International Communications in Heat and Mass Transfer, 126, 105366. https://doi.org/10.1016/j.icheatmasstransfer.2021.105366
  • Nakhchi, M. E. (2019). Experimental optimization of geometrical parameters on heat transfer and pressure drop inside sinusoidal wavy channels. Thermal Science and Engineering Progress, 9, 121–131. https://doi.org/10.1016/j.tsep.2018.11.006
  • Liu, X., Fu, Y., Wang, J., Zhang, H., & Zhu, J. (2022). Investigation on flow and heat transfer in rectangular cross-section sinusoidal channels. International Journal of Thermal Sciences, 176, 107490. https://doi.org/10.1016/j.ijthermalsci.2022.107490
  • Togun, H., Homod, R. Z., Yaseen, Z. M., Abed, A. M., Dhabab, J. M., Ibrahem, R. K., Dhahbi, S., Rashidi, M. M., Ahmadi, G., Yaïci, W. A., & Mahdi, J. M. (2022). Efficient heat transfer augmentation in channels with semicircle ribs and hybrid Al2O3-Cu/water nanofluids. Nanomaterials, 12(15), 2720. https://doi.org/10.3390/nano12152720
  • Akcay, S. (2023). Heat transfer analysis of pulsating nanofluid flow in a semicircular wavy channel with baffles. Sādhanā, 48, 57. https://doi.org/10.1007/s12046-023-02119-x
  • Ajeel, R. K., Sopian, K., & Zulkifli, R. (2021). A novel curved-corrugated channel model: thermal-hydraulic performance and design parameters with nanofluid. International Communications in Heat and Mass Transfer, 120, 105037. https://doi.org/10.1016/j.icheatmasstransfer.2020.105037
  • Uysal, D., & Akçay, S. (2024). Numerical study of thermal and hydrodynamic characteristics of turbulent flow in hybrid corrugated channels with different wave profiles. Journal of Mechanical Engineering and Sciences, 18(2), 10026–10045. https://doi.org/10.15282/jmes.18.2.2024.5.0792
  • Zhang, L., & Che, D. (2011). Influence of corrugation profile on the thermalhydraulic performance of cross-corrugated plates. Numerical Heat Transfer, Part A: Applications, 59 (4) 267–296. https://doi.org/10.1080/10407782.2011.540963
  • Ahmed, M., Yusoff, M., Ng, K., & Shuaib, N. (2014). Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid. Case Studies in Thermal Engineering, 4, 65-75. https://doi.org/10.1016/j.csite.2014.07.001
  • Salami, M., Khoshvaght-Aliabadi, M., & Feizabadi, A. (2019). Investigation of corrugated channel performance with different wave shapes. Journal of Thermal Analysis and Calorimetry, 138(5), 3159–3174. https://doi.org/10.1007/s10973-019-08361-y
  • Nitturi, L. K., Kapu, V. K. S., Gugulothu, R., Kaleru, A., Vuyyuri, V., & Farid, A. (2023). Augmentation of heat transfer through passive techniques. Heat Transfer, 52(6), 4422-4449. https://doi.org/10.1002/htj.22877
  • Kanchan, B. K., Chandan, G. K., & Kumar, J. (2024). Effect of obstacle configuration in sinusoidal bfsc on hydrothermal performance and irreversibility characteristics: A numerical study. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 48, 145–162. https://doi.org/10.1007/s40997-023-00649-7
  • Raza, A., Hasnain, J., Shah, S. S., Haq, R. U., & Alhushaybari, A. (2024). Influence of solid cylinders on fluid flow and thermal analysis in a curved channel with constant magnetic field. International Communications in Heat and Mass Transfer, 158, 107887. https://doi.org/10.1016/j.icheatmasstransfer.2024.107887
  • Zheng, Y., Yang, H., Mazaheri, H., Aghaei, A., Mokhtari, N., & Afrand, M. (2021). An investigation on the influence of the shape of the vortex generator on fluid flow and turbulent heat transfer of hybrid nanofluid in a channel. Journal of Thermal Analysis and Calorimetry, 143,1425–1438. https://doi.org/10.1007/s10973-020-09415-2
  • Naderifar, A., Nikian, M, Javaherdeh, K., & Borji, M. (2022). Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-newtonian nanofluid flow through a corrugated channel. Journal of Thermal Analysis and Calorimetry, 147, 9779-9791. https://doi.org/10.1007/s10973-022-11222-w
  • Akcay, S. (2023). Numerical study of turbulent heat transfer process in different wavy channels with solid and perforated baffles. Heat Transfer Research, 54(18), 53-82. https://doi.org/ 10.1615/HeatTransRes.2023046621
  • Acır, A., Ata, I., & Canlı, M. E. (2016). Investigation of effect of the circular ring turbulators on heat transfer augmentation and fluid flow characteristic of solar air heater. Experimental Thermal and Fluid Science, 77, 45-54. http://dx.doi.org/10.1016/j.expthermflusci.2016.04.012
  • Acır, A., & Ata, I. (2016). A study of heat transfer enhancement in a new solar air heater having circular type turbulators. Journal of the Energy Institute, 89, 606-616. http://dx.doi.org/10.1016/j.joei.2015.05.008
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Selma Akcay 0000-0003-2654-0702

Nasser Abdoul Halim Ismael This is me 0009-0003-4779-0847

Maher Abdulhameed Sadeq Sadeq This is me 0009-0005-0563-316X

Project Number Proje No: 1919B012319076, 2209A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı, 2023-2
Publication Date June 29, 2025
Submission Date February 2, 2025
Acceptance Date June 2, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Akcay, S., Ismael, N. A. H., & Sadeq, M. A. S. (2025). Dairesel Türbülatörler ile Asimetrik Trapez Dalgalı bir Kanalda Termohidrolik Performans Analizi. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(1), 149-164. https://doi.org/10.33484/sinopfbd.1631618


Articles published in Sinopjns are licensed under CC BY-NC 4.0.