Research Article
BibTex RIS Cite

The Problem of Freedom of Expression in the Public Sphere of Social Media: Descriptive Analysis of the Echo Chamber Effect

Year 2024, Volume: 33 Issue: 2, 277 - 317, 24.10.2024
https://doi.org/10.26650/siyasal.2024.33.1438504

Abstract

The echo chamber effect is a phenomenon where people with similar ideas, beliefs, and manners intensify their ideas and thoughts with the pleasure of being approved, whereas people with opposing ideas and beliefs sink into silence. This is one of the biggest barriers to the development of a free and democratic environment for ideas and beliefs, and it is crucial for the democratic perspective on the freedom of expression on social media. This issue is a serious problem because the oppressive view and opinion environment strengthens practices that exclude diversity. This research aimed to descriptively examine tweets in terms of their significant hints provided through the creation of the echo chamber. The hashtag “#SUSyalMedyaYasası” (#Socialmedialaw)-related tweets were selected as the trending topics. Through descriptive analysis, this study also attempted to describe how the echo chamber concept affected and shaped the belief and idea posts on X. According to the analysis’s findings, the new regulation on social media intensified the echo chamber effect by strengthening some predetermined attitudes and beliefs and weakening others by separating the legislation from its context and content.

Ethical Statement

Çalışma, etik beyan gerektirmemektedir.

Supporting Institution

-

Thanks

Teşekkürler.

References

  • Akyüz, S. S.; Kazaz, M. & Gülnar, B. (2021). İletişim fakültesi öğrencilerinin sahte/yalan haberlerle ilgili görüşlerine yönelik betimleyici bir çalışma. Selçuk İletişim, 14(1), 216-239. google scholar
  • Barabasi, A.-L. & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. google scholar
  • Berger, J. & Milkman, K. L. (2012). What makes online content viral?, Journal of Marketing Research, 49(2), 192-205. google scholar
  • Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113-120. google scholar
  • Boyd, D., Golder S. & Lotan, G. (2010). Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter. In 2010 43rd Hawaii International Conference on System Sciences (pp. 1-10). IEEE. google scholar
  • Bozdag, E. (2013). Bias in algorithmic filtering and personalisation. Ethics and Information Technology, 15(3), 209-227, s. 213. google scholar
  • Bruns, A. (2017). Echo chamber? What echo chamber? Reviewing the evidence. in 6th Biennial Future of Journalism Conference, September (FOJ17). 2017-09-15. Retrieved from https://eprints.qut.edu.au/113937/ google scholar
  • Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi W. & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences of the United States of America, 118(9), e2023301118. google scholar
  • Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi W. & Starnini, M. (2021). The Echo Chamber Effect on Social Media, Proceedings of the National Academy of Sciences, 118(9), 1-8. Retrieved from https:// www.pnas.org/doi/abs/10.1073/pnas.2023301118 google scholar
  • Coviello, L., Sohn, Y., Kramer, A. D., Marlow, C., Franceschetti, M., Christakis NA. & Fowler, J. H. (2014). Detecting emotional contagion in massive social networks. PloS one, 9(3), e90315. google scholar
  • Creswell, J. W. (2013). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). Sage Publications. google scholar
  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269271. google scholar
  • Dubois, E. & Blank, G. (2018). The echo chamber is overstated: the moderating effect of political interest and diverse media. Information, communication & society, 21(5), 729-745. google scholar
  • Dutton, W. H., Reisdorf, B. C., Dubois, E. & Blank, G. (2017). Search and politics: The use and impact of searches in Britain, France, Germany, Italy, Poland, Spain, and the United States. Retrieved from https://ora.ox.ac.uk/catalog/uuid:2cec8e9b-cce1-4339-991684715a62066c/download_file?file_format=application%2Fpdf&safe_filename=Blank%2Bet%2Bal%2C%2BSearch%2Band%2Bpolitics.pdf google scholar
  • Flaxman, S., Goel S. & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public opinion quarterly, 80(S1), 298-320. google scholar
  • Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7 google scholar
  • Fruchterman, T. M. & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practise and experience, 21(11), 1129-1164. google scholar
  • Girvan, M. & Newman, M. E. (2002). Community structures in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821-7826. google scholar
  • Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero A. & Moreno, Y (2011). Dynamics of protest recruitment through an online network. Scientific reports, 1(1), 1-7. google scholar
  • Guess, A.; Nyhan, B.; Lyons, B. & Reifler, J. (2018). Avoiding the Echo Chamber About Echo Chambers. google scholar
  • Knight Foundation. Retrieved from https://kf-site-production.s3.amazonaws.com/media_elements/ files/000/000/133/original/Topos_KF_White-Paper_Nyhan_V1.pdf google scholar
  • Hansen, D. L., & Shneiderman, B. & Smith, M. A. (2010). Analysing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann. google scholar
  • Jorgensen, R. F. & Zuleta, L. (2020). Private Governance of Freedom of Expression on Social Media Platforms: EU content regulation through the lens of human rights standards, NORDICOM Review: Nordic Research on Media and Communication, 41(1), 51-68. https://doi.org/10.2478/nor-2020-0003 google scholar
  • Kramer, A. D., & Guillory, J. E. & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings ofthe National academy ofSciences of the United States of America, 111(24), 8788-8789, 2008. google scholar
  • Liu, X. & Fahmy, S. (2011). Exploring the Spiral of Silence in the Virtual World: Individual Willingness to Express Personal Opinions Online versus Offline Settings, Journal of Media and Communication Studies, 3(2), 45-57. Retrieved from https://doi.org/10.5897/JMCS.9000031 google scholar
  • B. D. Loader & Mercea, D. (2011). Networking Democracy? Social Media Innovations and Participatory Politics. Information, Communication and Society, 14(6), 757-769. Retrieved from https://doi.org/10.108 0/1369118X.2011.592648. google scholar
  • Maccatrozzo, V. (2012). Burst Filter Bubble: Using a Semantic Web to Enable Serendipity, P. Cudre-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. google scholar
  • Bernstein, and E. Blomqvist (Eds.) The Semantic Web-ISWC 2012 (pp. 391-398). Retrieved from https:// doi.org/10.1007/978-3-642- 35173-0_28 google scholar
  • Miles, M. B. & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Sourcebook (2nd ed.). Sage Publications. google scholar
  • Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167-256. google scholar
  • Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press. google scholar
  • NodeXL (2024). Retrieved from https://www.smrfoundation.org/nodexl/ google scholar
  • Pariser, E. (2011). The Filter Bubble: What the Internet is Hiding from You (London: The Penguin Press. google scholar
  • Patton, M. Q. (2002). Qualitative Research and Evaluation Methods (3rd ed.). Sage Publications. google scholar
  • Quattrociocchi, W. (2017). Inside the echo chamber. Scientific American, 316(4), 60-63. google scholar
  • Scott, M. (25.01.2022). Fringe social media networks sidestep online content rules. Retrieved from https:// www.politico.eu/article/fringe-social-media-telegram-extremism-far-right/ google scholar
  • Smith, M., Shneiderman, B., Milic-Frayling, N., Rodrigues, E., Barash, V. et al., (2009). Analysing (social media) networks with NodeXL. Proceedings of the Fourth International Conference on Communities and Technologies. google scholar
  • Suler, J. (2005). The Online Disinhibition Effect, International Journal ofApplied Psychoanalytic Studies, 2(2), 184-188. Retrieved from https://doi.org/10.1089/1094931041291295. google scholar
  • Sunstein, Cass R. (2007). Republic.com 2.0.” Princeton University Press, 2007. google scholar
  • Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. google scholar
  • Wolfowicz, M., Weisburd D. & Hasisi, B. (2023). Examining the interactive effects of the filter bubble and the echo chamber on radicalisation. Journal ofExperimental Criminology, 19(1), 119-141. google scholar
  • Yücel, E. & Çizel, B. (2018). Bilişsel Uyumsuzluk Teorisi Üzerine Kavramsal Bir İnceleme: Satın Alma Perspektifi. Journal of Yasar University, 2018, 13/50, 150-16 google scholar

Sosyal Medya Kamusal Alanında İfade Özgürlüğü Problemi: Yankı Fanusu Etkisi Üzerine Betimsel Bir Analiz

Year 2024, Volume: 33 Issue: 2, 277 - 317, 24.10.2024
https://doi.org/10.26650/siyasal.2024.33.1438504

Abstract

Yankı fanusu etkisi, benzer fikir, kanaat veya tutumlara sahip kişilerin onanmanın da verdiği hazla kendi fikir ve düşüncelerini pekiştirirken, karşıt görüş, fikir ve kanaatlere sahip kişilerin suskunluğa gömülmeleri olgusudur. Bu durum, düşünce ve kanaat ikliminin özgürce ve demokratik biçimde oluşumu önündeki en ciddi engellerden biri olup, düşünce ve ifade özgürlüğünün sosyal medya kamusal alanındaki demokratik görünümü açısından önemlidir. Konu, baskıcı görüş ve kanaat ortamının farklılığı dışlayıcı pratikleri güçlendirmesi bakımından ciddi bir problemdir. Bu çalışmada, X mecrasından yapılan paylaşımların betimsel analizi amaçlanmıştır. Çalışmada bu amaçla trend topic olarak “#SUSyalMedyaYasası” hashtagli X paylaşımları seçilmiştir. Çalışmada ayrıca betimsel analiz tekniğiyle yankı fanusu kavramının X ortamındaki kanaat ve düşünce paylaşımlarını etkileme ve şekillendirme süreci betimlenmeye çalışılmıştır. Yapılan analiz sonucunda, yeni sosyal medya yasa düzenlemesinin gerek içeriği gerekse kapsamı bakımından bağlamından koparılarak ön belirlenmiş bazı görüş ve kanaatleri daha da güçlendirdiği ve bu durumun da yankı fanusu etkisini arttırdığı bulgulanmıştır.

References

  • Akyüz, S. S.; Kazaz, M. & Gülnar, B. (2021). İletişim fakültesi öğrencilerinin sahte/yalan haberlerle ilgili görüşlerine yönelik betimleyici bir çalışma. Selçuk İletişim, 14(1), 216-239. google scholar
  • Barabasi, A.-L. & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. google scholar
  • Berger, J. & Milkman, K. L. (2012). What makes online content viral?, Journal of Marketing Research, 49(2), 192-205. google scholar
  • Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113-120. google scholar
  • Boyd, D., Golder S. & Lotan, G. (2010). Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter. In 2010 43rd Hawaii International Conference on System Sciences (pp. 1-10). IEEE. google scholar
  • Bozdag, E. (2013). Bias in algorithmic filtering and personalisation. Ethics and Information Technology, 15(3), 209-227, s. 213. google scholar
  • Bruns, A. (2017). Echo chamber? What echo chamber? Reviewing the evidence. in 6th Biennial Future of Journalism Conference, September (FOJ17). 2017-09-15. Retrieved from https://eprints.qut.edu.au/113937/ google scholar
  • Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi W. & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences of the United States of America, 118(9), e2023301118. google scholar
  • Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi W. & Starnini, M. (2021). The Echo Chamber Effect on Social Media, Proceedings of the National Academy of Sciences, 118(9), 1-8. Retrieved from https:// www.pnas.org/doi/abs/10.1073/pnas.2023301118 google scholar
  • Coviello, L., Sohn, Y., Kramer, A. D., Marlow, C., Franceschetti, M., Christakis NA. & Fowler, J. H. (2014). Detecting emotional contagion in massive social networks. PloS one, 9(3), e90315. google scholar
  • Creswell, J. W. (2013). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). Sage Publications. google scholar
  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269271. google scholar
  • Dubois, E. & Blank, G. (2018). The echo chamber is overstated: the moderating effect of political interest and diverse media. Information, communication & society, 21(5), 729-745. google scholar
  • Dutton, W. H., Reisdorf, B. C., Dubois, E. & Blank, G. (2017). Search and politics: The use and impact of searches in Britain, France, Germany, Italy, Poland, Spain, and the United States. Retrieved from https://ora.ox.ac.uk/catalog/uuid:2cec8e9b-cce1-4339-991684715a62066c/download_file?file_format=application%2Fpdf&safe_filename=Blank%2Bet%2Bal%2C%2BSearch%2Band%2Bpolitics.pdf google scholar
  • Flaxman, S., Goel S. & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public opinion quarterly, 80(S1), 298-320. google scholar
  • Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7 google scholar
  • Fruchterman, T. M. & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practise and experience, 21(11), 1129-1164. google scholar
  • Girvan, M. & Newman, M. E. (2002). Community structures in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821-7826. google scholar
  • Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero A. & Moreno, Y (2011). Dynamics of protest recruitment through an online network. Scientific reports, 1(1), 1-7. google scholar
  • Guess, A.; Nyhan, B.; Lyons, B. & Reifler, J. (2018). Avoiding the Echo Chamber About Echo Chambers. google scholar
  • Knight Foundation. Retrieved from https://kf-site-production.s3.amazonaws.com/media_elements/ files/000/000/133/original/Topos_KF_White-Paper_Nyhan_V1.pdf google scholar
  • Hansen, D. L., & Shneiderman, B. & Smith, M. A. (2010). Analysing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann. google scholar
  • Jorgensen, R. F. & Zuleta, L. (2020). Private Governance of Freedom of Expression on Social Media Platforms: EU content regulation through the lens of human rights standards, NORDICOM Review: Nordic Research on Media and Communication, 41(1), 51-68. https://doi.org/10.2478/nor-2020-0003 google scholar
  • Kramer, A. D., & Guillory, J. E. & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings ofthe National academy ofSciences of the United States of America, 111(24), 8788-8789, 2008. google scholar
  • Liu, X. & Fahmy, S. (2011). Exploring the Spiral of Silence in the Virtual World: Individual Willingness to Express Personal Opinions Online versus Offline Settings, Journal of Media and Communication Studies, 3(2), 45-57. Retrieved from https://doi.org/10.5897/JMCS.9000031 google scholar
  • B. D. Loader & Mercea, D. (2011). Networking Democracy? Social Media Innovations and Participatory Politics. Information, Communication and Society, 14(6), 757-769. Retrieved from https://doi.org/10.108 0/1369118X.2011.592648. google scholar
  • Maccatrozzo, V. (2012). Burst Filter Bubble: Using a Semantic Web to Enable Serendipity, P. Cudre-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. google scholar
  • Bernstein, and E. Blomqvist (Eds.) The Semantic Web-ISWC 2012 (pp. 391-398). Retrieved from https:// doi.org/10.1007/978-3-642- 35173-0_28 google scholar
  • Miles, M. B. & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Sourcebook (2nd ed.). Sage Publications. google scholar
  • Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167-256. google scholar
  • Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press. google scholar
  • NodeXL (2024). Retrieved from https://www.smrfoundation.org/nodexl/ google scholar
  • Pariser, E. (2011). The Filter Bubble: What the Internet is Hiding from You (London: The Penguin Press. google scholar
  • Patton, M. Q. (2002). Qualitative Research and Evaluation Methods (3rd ed.). Sage Publications. google scholar
  • Quattrociocchi, W. (2017). Inside the echo chamber. Scientific American, 316(4), 60-63. google scholar
  • Scott, M. (25.01.2022). Fringe social media networks sidestep online content rules. Retrieved from https:// www.politico.eu/article/fringe-social-media-telegram-extremism-far-right/ google scholar
  • Smith, M., Shneiderman, B., Milic-Frayling, N., Rodrigues, E., Barash, V. et al., (2009). Analysing (social media) networks with NodeXL. Proceedings of the Fourth International Conference on Communities and Technologies. google scholar
  • Suler, J. (2005). The Online Disinhibition Effect, International Journal ofApplied Psychoanalytic Studies, 2(2), 184-188. Retrieved from https://doi.org/10.1089/1094931041291295. google scholar
  • Sunstein, Cass R. (2007). Republic.com 2.0.” Princeton University Press, 2007. google scholar
  • Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. google scholar
  • Wolfowicz, M., Weisburd D. & Hasisi, B. (2023). Examining the interactive effects of the filter bubble and the echo chamber on radicalisation. Journal ofExperimental Criminology, 19(1), 119-141. google scholar
  • Yücel, E. & Çizel, B. (2018). Bilişsel Uyumsuzluk Teorisi Üzerine Kavramsal Bir İnceleme: Satın Alma Perspektifi. Journal of Yasar University, 2018, 13/50, 150-16 google scholar
There are 42 citations in total.

Details

Primary Language English
Subjects Political Science (Other)
Journal Section Articles
Authors

Hüseyin Köse 0000-0001-5697-9009

Bahar Balcı Aydoğan 0000-0003-3207-5595

Publication Date October 24, 2024
Submission Date February 16, 2024
Acceptance Date August 23, 2024
Published in Issue Year 2024 Volume: 33 Issue: 2

Cite

APA Köse, H., & Balcı Aydoğan, B. (2024). The Problem of Freedom of Expression in the Public Sphere of Social Media: Descriptive Analysis of the Echo Chamber Effect. Siyasal: Journal of Political Sciences, 33(2), 277-317. https://doi.org/10.26650/siyasal.2024.33.1438504