Research Article
BibTex RIS Cite
Year 2024, , 8 - 24, 30.06.2024
https://doi.org/10.70030/sjmakeu.1433801

Abstract

References

  • Zada, L. R., Nawaz, S., Ahsan, K. S. Nisar., & Baleanu D. (2021). New iterative approach for the solutions of fractional order in homogeneous partial differential equations. AIMS Mathematics, vol. 6, no. 2 p. 1348–1365, doi: 10.3934/math.2021084.
  • Nasir, A., Mansour, F. Y., Saeed, A. A., Rashid, N., Laiq, Z., Mohammad, M. A., & Ndolane, S. (2022). New Iterative Method for Solving a Coupled System of Fractional Order Drinfeld– Sokolov-Wilson (FDSW) and Fractional Shallow Water (FSW) Equations. Journal of Nanomaterials, p. 1-13, doi.org/10.1155/2022/8370107.
  • Belal, B., Ahmed, S. H., & Firas, G. (2023a). Closed-Form Solutions for Cauchy-Euler Differential Equations through the New Iterative Method (NIM). International Journal for Applied Mathematics & Information Sciences, vol. 17, no. 3 p. 459-467, DOI: 10.18576/amis/170314.
  • Shittu, M. T., Usman, M. A., Solanke, O. O., Hammed, F. A., & Dehinsilu, O. A. (2020). The New Iterative Method for Solving Linear and Nonlinear Systems of Partial Differential Equations. FULafia Journal of Science & Technology, vol. 6, no. 3 p. 42-47.
  • Awais, A. (2020). Analytical solution of telegraph equations by Variational Iteration Method. Annals of Mathematical Modeling, vol. 2, no. 1 p. 1–6, DOI: https://doi.org/10.33292/amm.v2i1.11.
  • Muhammad, A. S., Wafaa, M. T., Raad, A. H., Ali, J., & Ibrahim, M. S. (2023). Implementation of Variational Iteration Method for Various Types of Linear and Nonlinear Partial Differential Equations. International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 2 p. 2131-2141, DOI: http://doi.org/10.11591/ijece.v13i2.pp2131-2141.
  • Usman, M. A., Shittu, M. T., Solanke, O. O., & Hammed, F. A. (2020). Solvability of The Third- Order Korteweg-De Vries (KDV) Equation by Variational Iteration and New Iterative Methods. FULafia Journal of Science and Technology, vol. 6, no. 4 p. 19-26.
  • Falade, K. I., & Badamasi, S. M. (2023). Solving System of First Order Linear and Nonlinear Differential Equations in Applied Mathematics. Recent Advances in Mathematical Research and Computer Science, vol. 10, p. 120-137, DOI: 10.9374/bpi/ramrcs/v10/2632C. Batiha, B., Heilat, A. S., & Ghanim, F. (2023). Closed-Form Solutions for Cauchy-Euler Differential Equations through the New Iterative Method (NIM). Applied Mathematics & Information Sciences, vol. 17, no. 3 p. 459-467, DOI: 10.18576/amis/170314.
  • Falade, K. I., Tiamiyu, A. T., & Umar, I. (2021). Numerical Comparison of Runge-Kutta (RK5) and New Iterative Method (NIM) For Solving Metastatic Cancer Model. Malaysian Journal of Computing, vol. 6, no 1 p. 758-771, DOI:10.24191/mjoc.v6i1.10359.
  • Audu, K. J., Yahaya, Y. A., Garba, J., Cole, A. T., & Tafida, F. U. (2023a). Continuous Formulation of Hybrid Block Milne Technique for System of Ordinary Differential Equations. Abacus Journal, vol. 49, no. 4 p 1-15.
  • Ahmad, H., Khan, T. A., Stanimirović, P. S., Chu, Y. M., & Ahmad, I. (2020). Modified Variational Iteration Algorithm-II: convergence and applications to diffusion models, Complexity Journal, vol. 6, p. 1220–1227, DOI: org/10.1155/2020/8841718.
  • Audu, K. J., Taiwo, A. R., & Soliu, A. A. (2023b). Assessment of Numerical Performance of Some Runge-Kutta Methods and New Iteration Method on First Order Differential Problems. Dutse Journal of Pure and Applied Sciences, vol. 9, no. 4 p. 58-70.
  • Abdelhakem , M., Baleau, D., Agarwal, P & Moussa, H. (2023). Approximating system of ordinary differential-algebraic equations via derivative of Legendre polynomials operational matrices. International Journal of Modern Physic, vol. 34, no. 3 p. 23500365, DOI:10.1142/S0129183123500365.
  • Msmali, A. H. Alotaibi, A. M., El-Moneam., M. A. Badr, S. & Ahmadini, A. A. H. (2021). A General Scheme for Solving Systems of Linear First-Order Differential Equations Based on the Differential Transform Method. Hindawi Journal of Mathematics, 2021, Article ID8839201, DOI: https://doi.org/10.1155/2021/8839201.
  • Al-Ahmad, S., Sulaiman, I. M., Mamat, M., & Ghazali, P. L. (2021). Modified Differential Transform scheme for solving Systems of first order Ordinary Differential Equations. Journal of Mathematics and Computer Science, vol. 22, no. 1 p. 73—84, DOI:10.22436/jmcs.022.01.07.
  • Ababneh, O., & Zomot, N. (2021). New Iterative Method with Application. Journal of Advances in Mathematics, vol. 20, p. 1921-1934, DOI: https://doi.org/10.24297/jam.v20i.8289.
  • Muhammad, S. R., Yaseen, M., & Tahir, K. (2022). New Iterative Method for Solution of System of linear Differential Equations. International Journal of Science and Research, vol. 5, no. 2 p. 1287-1289.
  • İsmet, F. Y., Afşi G. (2021). Numerical And Experimental Investigation of Air Permeability of An Evaporator. Scientific Journal of Mehmet Akif Ersoy University, vol. 6, no. 2 p. 51-56.
  • Belal, B., Firas, G., & Khaled, B. (2023b). Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation. Symmetry, vol. 15, no. 688 p. 1-7, DOI: DOI: org/10.3390/sym15030688.
  • Nawaz, R., Ali, N., Zada, L., Shah, Z., Tassaddiq, A., & Alreshidi, N. A. (2020). Comparative analysis of natural transform decomposition method and new iterative method for fractional foam drainage problem and fractional order modified regularized long-wave equation. Fractals Journal, vol. 28, no. 7 p. 20-50, DOI: doi.org/10.1142/S0218348X20501248.
  • Jasim, O. A. (2020). The Revised NIM for Solving the Non-Linear System Variant Boussinesq Equations and Comparison with NIM. Karbala International Journal of Modern Science, vol. 6, no. 3 p. 353-364, DOI:10.33640/2405-609X.1829.
  • Belal, B. (2023). Solving one species Lotka–Volterra equation by the New Iterative Method (NIM). WSEAS Transactions on mathematics, vol 22, p. 324-329, DOI:10.37394/23206.2023.22.38.
  • Mohammad, S. (2023). A new acceleration of Variational Iterative Method for initial value problem. Mathematics and Computers in Simulation, vol. 214, p. 249-259, DOI: https//doi.org/10.1016/j.matcom.2023.07.002.
  • Tang, W., Anjum, N., He, J. H. (2023). Variational Iteration Method for the nanobeams-based N/MEMS system. MethodsX, vol. 11, DOI: https://doi.org/10.1016/j.mex.2023.102465.
  • Shoaib, M., Shah, F. A., Nisar, K. S., Raja, M. A. Z., Haq, E. U., Abbasi, A. Z., Hassan, Q. M. U., Al- Harbi, N., Abdel-Aty, A. H. (2023). Variational Iteration Method along with intelligent computing system for the radiated flow of electrically conductive viscous fluid through porous medium. Heliyon, DOI: 10.1016/j.heliyon.2023.e14365.
  • Poornima, S. and Nirmala, T. (2020). Comparative Study of Runge-Kutta Methods of Solving Ordinary Differential Equations. International Journal of Research in Engineering, Science and Management, Vol. 3, p. 557-559.

A Comparative Analysis of Two Semi Analytic Approaches in Solving Systems of First-Order Differential Equations

Year 2024, , 8 - 24, 30.06.2024
https://doi.org/10.70030/sjmakeu.1433801

Abstract

The resolution of systems of first-order ordinary differential equations (ODEs) stands as a pivotal pursuit with extensive implications across scientific and engineering domains. In tackling this fundamental task, this study undertakes a rigorous comparative assessment of two semi-analytic methodologies, the Variational Iterative Method (VIM) and the New Iterative Method (NIM). Motivated by the need to address a critical research gap, our investigation delves into these approaches' relative merits and demerits. Firstly, it conducts a comprehensive examination of VIM, a well-established method, juxtaposed with NIM, a relatively unexplored approach, to uncover their comparative strengths and limitations. Secondly, the study contributes to the existing knowledge in numerical methods for ODEs by shedding light on essential performance characteristics, including convergence properties, computational efficiency, and accuracy, across a diverse array of ODE systems. Through meticulous numerical experimentation, we not only reveal practical insights into the efficacy of VIM and NIM but also bridge a significant knowledge gap in the field of numerical ODE solvers. Our findings highlight VIM as the more effective method, thus advancing our understanding of semi-analytic approaches for solving ODE systems and furnishing valuable guidance for practitioners and researchers in selecting the most suitable method for their specific applications

References

  • Zada, L. R., Nawaz, S., Ahsan, K. S. Nisar., & Baleanu D. (2021). New iterative approach for the solutions of fractional order in homogeneous partial differential equations. AIMS Mathematics, vol. 6, no. 2 p. 1348–1365, doi: 10.3934/math.2021084.
  • Nasir, A., Mansour, F. Y., Saeed, A. A., Rashid, N., Laiq, Z., Mohammad, M. A., & Ndolane, S. (2022). New Iterative Method for Solving a Coupled System of Fractional Order Drinfeld– Sokolov-Wilson (FDSW) and Fractional Shallow Water (FSW) Equations. Journal of Nanomaterials, p. 1-13, doi.org/10.1155/2022/8370107.
  • Belal, B., Ahmed, S. H., & Firas, G. (2023a). Closed-Form Solutions for Cauchy-Euler Differential Equations through the New Iterative Method (NIM). International Journal for Applied Mathematics & Information Sciences, vol. 17, no. 3 p. 459-467, DOI: 10.18576/amis/170314.
  • Shittu, M. T., Usman, M. A., Solanke, O. O., Hammed, F. A., & Dehinsilu, O. A. (2020). The New Iterative Method for Solving Linear and Nonlinear Systems of Partial Differential Equations. FULafia Journal of Science & Technology, vol. 6, no. 3 p. 42-47.
  • Awais, A. (2020). Analytical solution of telegraph equations by Variational Iteration Method. Annals of Mathematical Modeling, vol. 2, no. 1 p. 1–6, DOI: https://doi.org/10.33292/amm.v2i1.11.
  • Muhammad, A. S., Wafaa, M. T., Raad, A. H., Ali, J., & Ibrahim, M. S. (2023). Implementation of Variational Iteration Method for Various Types of Linear and Nonlinear Partial Differential Equations. International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 2 p. 2131-2141, DOI: http://doi.org/10.11591/ijece.v13i2.pp2131-2141.
  • Usman, M. A., Shittu, M. T., Solanke, O. O., & Hammed, F. A. (2020). Solvability of The Third- Order Korteweg-De Vries (KDV) Equation by Variational Iteration and New Iterative Methods. FULafia Journal of Science and Technology, vol. 6, no. 4 p. 19-26.
  • Falade, K. I., & Badamasi, S. M. (2023). Solving System of First Order Linear and Nonlinear Differential Equations in Applied Mathematics. Recent Advances in Mathematical Research and Computer Science, vol. 10, p. 120-137, DOI: 10.9374/bpi/ramrcs/v10/2632C. Batiha, B., Heilat, A. S., & Ghanim, F. (2023). Closed-Form Solutions for Cauchy-Euler Differential Equations through the New Iterative Method (NIM). Applied Mathematics & Information Sciences, vol. 17, no. 3 p. 459-467, DOI: 10.18576/amis/170314.
  • Falade, K. I., Tiamiyu, A. T., & Umar, I. (2021). Numerical Comparison of Runge-Kutta (RK5) and New Iterative Method (NIM) For Solving Metastatic Cancer Model. Malaysian Journal of Computing, vol. 6, no 1 p. 758-771, DOI:10.24191/mjoc.v6i1.10359.
  • Audu, K. J., Yahaya, Y. A., Garba, J., Cole, A. T., & Tafida, F. U. (2023a). Continuous Formulation of Hybrid Block Milne Technique for System of Ordinary Differential Equations. Abacus Journal, vol. 49, no. 4 p 1-15.
  • Ahmad, H., Khan, T. A., Stanimirović, P. S., Chu, Y. M., & Ahmad, I. (2020). Modified Variational Iteration Algorithm-II: convergence and applications to diffusion models, Complexity Journal, vol. 6, p. 1220–1227, DOI: org/10.1155/2020/8841718.
  • Audu, K. J., Taiwo, A. R., & Soliu, A. A. (2023b). Assessment of Numerical Performance of Some Runge-Kutta Methods and New Iteration Method on First Order Differential Problems. Dutse Journal of Pure and Applied Sciences, vol. 9, no. 4 p. 58-70.
  • Abdelhakem , M., Baleau, D., Agarwal, P & Moussa, H. (2023). Approximating system of ordinary differential-algebraic equations via derivative of Legendre polynomials operational matrices. International Journal of Modern Physic, vol. 34, no. 3 p. 23500365, DOI:10.1142/S0129183123500365.
  • Msmali, A. H. Alotaibi, A. M., El-Moneam., M. A. Badr, S. & Ahmadini, A. A. H. (2021). A General Scheme for Solving Systems of Linear First-Order Differential Equations Based on the Differential Transform Method. Hindawi Journal of Mathematics, 2021, Article ID8839201, DOI: https://doi.org/10.1155/2021/8839201.
  • Al-Ahmad, S., Sulaiman, I. M., Mamat, M., & Ghazali, P. L. (2021). Modified Differential Transform scheme for solving Systems of first order Ordinary Differential Equations. Journal of Mathematics and Computer Science, vol. 22, no. 1 p. 73—84, DOI:10.22436/jmcs.022.01.07.
  • Ababneh, O., & Zomot, N. (2021). New Iterative Method with Application. Journal of Advances in Mathematics, vol. 20, p. 1921-1934, DOI: https://doi.org/10.24297/jam.v20i.8289.
  • Muhammad, S. R., Yaseen, M., & Tahir, K. (2022). New Iterative Method for Solution of System of linear Differential Equations. International Journal of Science and Research, vol. 5, no. 2 p. 1287-1289.
  • İsmet, F. Y., Afşi G. (2021). Numerical And Experimental Investigation of Air Permeability of An Evaporator. Scientific Journal of Mehmet Akif Ersoy University, vol. 6, no. 2 p. 51-56.
  • Belal, B., Firas, G., & Khaled, B. (2023b). Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation. Symmetry, vol. 15, no. 688 p. 1-7, DOI: DOI: org/10.3390/sym15030688.
  • Nawaz, R., Ali, N., Zada, L., Shah, Z., Tassaddiq, A., & Alreshidi, N. A. (2020). Comparative analysis of natural transform decomposition method and new iterative method for fractional foam drainage problem and fractional order modified regularized long-wave equation. Fractals Journal, vol. 28, no. 7 p. 20-50, DOI: doi.org/10.1142/S0218348X20501248.
  • Jasim, O. A. (2020). The Revised NIM for Solving the Non-Linear System Variant Boussinesq Equations and Comparison with NIM. Karbala International Journal of Modern Science, vol. 6, no. 3 p. 353-364, DOI:10.33640/2405-609X.1829.
  • Belal, B. (2023). Solving one species Lotka–Volterra equation by the New Iterative Method (NIM). WSEAS Transactions on mathematics, vol 22, p. 324-329, DOI:10.37394/23206.2023.22.38.
  • Mohammad, S. (2023). A new acceleration of Variational Iterative Method for initial value problem. Mathematics and Computers in Simulation, vol. 214, p. 249-259, DOI: https//doi.org/10.1016/j.matcom.2023.07.002.
  • Tang, W., Anjum, N., He, J. H. (2023). Variational Iteration Method for the nanobeams-based N/MEMS system. MethodsX, vol. 11, DOI: https://doi.org/10.1016/j.mex.2023.102465.
  • Shoaib, M., Shah, F. A., Nisar, K. S., Raja, M. A. Z., Haq, E. U., Abbasi, A. Z., Hassan, Q. M. U., Al- Harbi, N., Abdel-Aty, A. H. (2023). Variational Iteration Method along with intelligent computing system for the radiated flow of electrically conductive viscous fluid through porous medium. Heliyon, DOI: 10.1016/j.heliyon.2023.e14365.
  • Poornima, S. and Nirmala, T. (2020). Comparative Study of Runge-Kutta Methods of Solving Ordinary Differential Equations. International Journal of Research in Engineering, Science and Management, Vol. 3, p. 557-559.
There are 26 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation
Journal Section Original Research Articles
Authors

Khadeejah James Audu 0000-0002-6986-3491

Onıfade Babatunde 0009-0006-9090-0687

Publication Date June 30, 2024
Submission Date February 13, 2024
Acceptance Date June 29, 2024
Published in Issue Year 2024

Cite

APA Audu, K. . J., & Babatunde, O. (2024). A Comparative Analysis of Two Semi Analytic Approaches in Solving Systems of First-Order Differential Equations. Scientific Journal of Mehmet Akif Ersoy University, 7(1), 8-24. https://doi.org/10.70030/sjmakeu.1433801