Review
BibTex RIS Cite

Nanotechnology in Endodontics: Advancing and Efficacy in Root Canal Therapy

Year 2023, Volume: 6 Issue: 2, 14 - 18, 31.12.2023

Abstract

Nanotechnology is a rapidly developing field with a wide range of applications in various industries, including medicine, electronics, and materials science. Nanomaterials produced with nanotechnology have also started to be used in dentistry applications. The use of nanotechnology in dentistry has revolutionized various aspects of oral healthcare, from diagnostics to treatments.
This article reviews the current status of nanotechnology in the field of endodontics with its possible applications

References

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. (2019). The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. vol. 25, no.1 p.112. doi: 10.3390/molecules25010112.PMID: 31892180; PMCID: PMC6982820.
  • Gupta, J. (2011). Nanotechnology applications in medicine and dentistry. J. Investig. Clin. Dent. Vol 2,no. 2, p. 81–88. doi: 10.1111/j.2041-1626.2011.00046.x.
  • Mouli, P.E.C.; Kumar, S.M.; Parthiban, S. (2012). Nanotechnology in dentistry—A review. IJBMR vol 3, p.1550–1553.
  • Grumezescu, A.M. (2016). Nano technology in dentistry. Ficai A., Ficai D., Andronescu E., (eds.), Nanobiomaterials in Dentistry. Applications of Nanobiomaterials. Elsevier Health Sciences Distributor, London p. 187-210.
  • Freitas, R.A., Jr.(2000). Nanodentistry. J. Am. Dent. Assoc. Vol 131, no.11,p. 1559-1565. doi: 10.14219/jada.archive.2000.0084
  • Shetty NJ, Swati P, David K. (2013). Nanorobots: Future in dentistry. Saudi Dent J. Vol 25, no.2, p. 49-52. doi: 10.1016/j.sdentj.2012.12.002.
  • Jhaveri HM, Balaji PR. (2005). Nanotechnology: Future of Dentistry. J Indian Prosthodont Soc. p. 15–17. doi:10.4103/0972-4052.16335
  • Robert A, Freitas JR. Nanodentistry. Cover Story. (2010). J Indian Prosthodont Soc. Vol. 131, p. 1559-1565.
  • Saravana KR, Vijayalakshmi R. (2006). Nanotechnology in dentistry. Indian J Dent Res. Vol. 17,no. 2, p. 62-65. doi: 10.4103/0970-9290.29890.
  • Sharan, J.; Singh, S.; Lale, S.V.; Mishra, M.; Koul, V.; Kharbanda, O.P. (2017). Applications of nanomaterials in dental science: A review. J. Nanosci. Nanotechnol. Vol. 17, no. 4, p. 2235–2255. doi: 10.1166/jnn.2017.13885.
  • Chieruzzi, M.; Pagano, S.; Moretti, S.; Pinna, R.; Milia, E.; Torre, L.; Eramo, S. (2016). Nanomaterials for tissue engineering in dentistry. Nanomaterials.Vol.6, no. 7, p. 134. doi: 10.3390/nano6070134.
  • Sjögren, U.; Hägglund, B.; Sundqvist, G.; Wing, K. (1990). Factors affecting the long-term results of endodontic treatment. J. Endod. vol.16, no.10, p. 498–504. doi: 10.1016/S0099-2399(07)80180-4.
  • Alenazy, M.S.; Mosadomi, H.A.; Al-Nazhan, S.; Rayyan, M.R. (2018). Clinical considerations of nanobiomaterials in endodontics: A systematic review. Saudi Endod. J. Vol. 8,p. 163–169. doi: 10.4103/sej.sej_67_16
  • Shrestha A, Fong SW, Khoo BC, Kishen A. (2009). Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound. J Endod vol. 35, no.7, p.1028-33. doi: 10.1016/j.joen.2009
  • Damas BA, Wheater MA, Bringas JS, Hoen MM. (2011). Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J Endod. Vol.37, no. 3, p. 372-375. doi: 10.1016/j.joen.2010.11.027.
  • Al-Haddad A, Che Ab Aziz ZA. (2016). Bioceramic-based root canal sealers: A Review. Int J Biomater 2016:9753210. doi: 10.1155/2016/9753210
  • Kanaparthy R, Kanaparthy A. (2011). The changing face of dentistry: nanotechnology. Int J Nanomedicine. Vol. 6, p.2799-2804. doi: 10.2147/IJN..
  • Adini AR, Feldman Y, Cohen SR, Rapoport L, Moshkovich A, Redlich M, et al. (2011). Alleviating fatigue and failure of NiTi endodontic files by a coating containing inorganic fullerene like WS2 nanoparticles. J Mater Res. Vol.26, no. 10, p. 1234-1242.
  • Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, et al. (2010). Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod vol. 36, no. 2, p.322-328. doi: 10.1016/j.joen.2009.10.011.
  • Alabdulmohsen ZA, Saad AY. (2017). Antibacterial effect of silver nanoparticles against Enterococcus faecalis. Saudi Endod J. Vol.7, p.29-35.
  • Oncu A, Huang Y, Amasya G, Sevimay FS, Orhan K, Celikten B. (2021). Silver nanoparticles in endodontics: recent developments and applications. Restor Dent Endod. Vol.46(3):e38. doi: 10.5395/rde.2021.46.e38.
  • Torabinejad M, Handysides R, Khademi AA, Bakland LK. (2002). Clinical implications of the smear layer in endodontics: A review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. Vol.94, no. 6, p.658-666. doi: 10.1067/moe.2002.128962.
  • Kishen A, Upadya M, Tegos GP, Hamblin MR. (2010). Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol. Vol. 86, no.6, p.1343-1349. doi: 10.1111/j.1751-1097.2010.00792.x.
  • Afkhami F, Akbari S, Chiniforush N. (2017). Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study. J Endod. Vol. 43, no.2, p.279–282. doi: 10.1016/j.joen.2016.08.029.
  • Kishen A, Shi Z, Shrestha A, Neoh KG. (2008). An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. Vol. 34, no.12, p. 1515–1520. doi: 10.1016/j.joen.2008.08.035.
  • del Carpio-Perochena A, Kishen A, Shrestha A, Bramante CM. (2015) Antibacterial properties associated with chitosan nanoparticle treatment on root dentin and 2 types of endodontic sealers. J Endod. vol. 41, no.8, p.1353-1358. doi: 10.1016/j.joen.2015.03.020.
  • Lee DK, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang CY, Shi W, Hong C, Tetradis S, Kim Y, Park NH. (2015). Nanodiamond–gutta percha composite biomaterials for root canal therapy. ACS Nano. Vol.9, no.11, p.11490–11501. doi: 10.1021/acsnano.5b05718.
  • Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. (2011). Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. Vol.5, no.5, p. 3693–3700. doi: 10.1021/nn200021j.
  • Barreras US, Mendez FT, Martinez RE, et al. (2016). Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C Mater Biol Appl. Vol.58, p. 1182–1187. doi: 10.1016/j.msec.2015.09.085.
  • Guerreiro-Tanomaru JM, Trindade-Junior A, Cesar Costa B, da Silva GF, Drullis Cifali L, Basso Bernardi MI, Tanomaru-Filho M. (2014) Effect of zirconium oxide and zinc oxide nanoparticles on physicochemical properties and antibiofilm activity of a calcium silicate-based material. Sci World J. p. 975213:1–6. Doi: 10.1155/2014/975213.
  • Waltimo T, Mohn D, Paque F, Brunner TJ, Stark WJ, Imfeld T, Schätzle M, Zehnder M. (2009). Fine-tuning of bioactive glass for root canal disinfection. J Dent Res. Vol.88, no.3, p.235–238. doi: 10.1177/0022034508330315.
  • Wu C, Chang J, Fan W. (2012). Bioactive mesoporous calcium–silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J Mater Chem. Vol. 22, no. 33, p. 16801–16809.
  • Khetawat S, Lodha S. (2015). Nanotechnology (nanohydroxyapatite crystals): recent advancement in treatment of dentinal hypersensitivity. J Interdiscipl Med Dent Sci. Vol.3, p. 181.
  • Slenters TV, Hauser-Gerspach I, Daniels AU, Fromm KM. (2008). Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. J Mater Chem. Vol. 18, no. 44, p. 5359–5362.
  • Percival SL, Bowler PG, Russell D. (2005). Bacterial resistance to silver in wound care. J Hosp Infect. Vol. 60, no. 1, p.1–7. doi: 10.1016/j.jhin.2004.11.014.
  • Sathyanarayanan MB, Balachandranath R, Genji Srinivasulu Y, Kannaiyan SK,Subbiahdoss G. (2013). The effect of gold and iron-oxide nanoparticles on biofilmforming pathogens. ISRN Microbiol. ISRN Microbiol. 2013;2013:272086.1–11. Doi: 10.1155/2013/272086
  • Lughi V, Sergo V. (2010). Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. Vol. 26, no. 8, p. 807–820. doi: 10.1016/j.dental.2010.04.006.
  • Ramesh TR, Gangaiah M, Harish PV, Krishnakumar U, Nandakishore B. (2012). Zirconia Ceramics as a Dental Biomaterial--An Over view. Trends Biomater Artific Organs. Vol. 26, no.3, p. 154–160.
  • Hu C, Sun J, Long C, Wu L, Zhou C, Zhang X. (2019). Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol Rev. Vol. 8, no. 1, p.396–404.
  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. (2011). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. Vol. 6, no.8, p.933–940. doi: 10.2217/fmb.11.78.
  • Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R. (2013). Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Inf Epidemiol Microbiol. Vol. 1, no.1, p. 33–38.
  • Roy AS, Parveen A, Koppalkar AR, Prasad MA. (2010). Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol. Vol.1, no. 1, p.37.
  • Yamamoto O, Ohira T, Alvarez K, Fukuda M. (2010). Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B. Vol. 173, no.1–3, p. 208–212.
  • Jin T, He Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanoparticle Res. vol. 13, no. 12, p. 6877–6885.
  • Ahamed M, Alhadlaq HA, Khan MM, Karuppiah P, Aldhabi NA. (2014). Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nanomater. Vol. 2014, p.1–4.
  • Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD. (2008). Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci. Vol.3, p. 185–193.
Year 2023, Volume: 6 Issue: 2, 14 - 18, 31.12.2023

Abstract

References

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. (2019). The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. vol. 25, no.1 p.112. doi: 10.3390/molecules25010112.PMID: 31892180; PMCID: PMC6982820.
  • Gupta, J. (2011). Nanotechnology applications in medicine and dentistry. J. Investig. Clin. Dent. Vol 2,no. 2, p. 81–88. doi: 10.1111/j.2041-1626.2011.00046.x.
  • Mouli, P.E.C.; Kumar, S.M.; Parthiban, S. (2012). Nanotechnology in dentistry—A review. IJBMR vol 3, p.1550–1553.
  • Grumezescu, A.M. (2016). Nano technology in dentistry. Ficai A., Ficai D., Andronescu E., (eds.), Nanobiomaterials in Dentistry. Applications of Nanobiomaterials. Elsevier Health Sciences Distributor, London p. 187-210.
  • Freitas, R.A., Jr.(2000). Nanodentistry. J. Am. Dent. Assoc. Vol 131, no.11,p. 1559-1565. doi: 10.14219/jada.archive.2000.0084
  • Shetty NJ, Swati P, David K. (2013). Nanorobots: Future in dentistry. Saudi Dent J. Vol 25, no.2, p. 49-52. doi: 10.1016/j.sdentj.2012.12.002.
  • Jhaveri HM, Balaji PR. (2005). Nanotechnology: Future of Dentistry. J Indian Prosthodont Soc. p. 15–17. doi:10.4103/0972-4052.16335
  • Robert A, Freitas JR. Nanodentistry. Cover Story. (2010). J Indian Prosthodont Soc. Vol. 131, p. 1559-1565.
  • Saravana KR, Vijayalakshmi R. (2006). Nanotechnology in dentistry. Indian J Dent Res. Vol. 17,no. 2, p. 62-65. doi: 10.4103/0970-9290.29890.
  • Sharan, J.; Singh, S.; Lale, S.V.; Mishra, M.; Koul, V.; Kharbanda, O.P. (2017). Applications of nanomaterials in dental science: A review. J. Nanosci. Nanotechnol. Vol. 17, no. 4, p. 2235–2255. doi: 10.1166/jnn.2017.13885.
  • Chieruzzi, M.; Pagano, S.; Moretti, S.; Pinna, R.; Milia, E.; Torre, L.; Eramo, S. (2016). Nanomaterials for tissue engineering in dentistry. Nanomaterials.Vol.6, no. 7, p. 134. doi: 10.3390/nano6070134.
  • Sjögren, U.; Hägglund, B.; Sundqvist, G.; Wing, K. (1990). Factors affecting the long-term results of endodontic treatment. J. Endod. vol.16, no.10, p. 498–504. doi: 10.1016/S0099-2399(07)80180-4.
  • Alenazy, M.S.; Mosadomi, H.A.; Al-Nazhan, S.; Rayyan, M.R. (2018). Clinical considerations of nanobiomaterials in endodontics: A systematic review. Saudi Endod. J. Vol. 8,p. 163–169. doi: 10.4103/sej.sej_67_16
  • Shrestha A, Fong SW, Khoo BC, Kishen A. (2009). Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound. J Endod vol. 35, no.7, p.1028-33. doi: 10.1016/j.joen.2009
  • Damas BA, Wheater MA, Bringas JS, Hoen MM. (2011). Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J Endod. Vol.37, no. 3, p. 372-375. doi: 10.1016/j.joen.2010.11.027.
  • Al-Haddad A, Che Ab Aziz ZA. (2016). Bioceramic-based root canal sealers: A Review. Int J Biomater 2016:9753210. doi: 10.1155/2016/9753210
  • Kanaparthy R, Kanaparthy A. (2011). The changing face of dentistry: nanotechnology. Int J Nanomedicine. Vol. 6, p.2799-2804. doi: 10.2147/IJN..
  • Adini AR, Feldman Y, Cohen SR, Rapoport L, Moshkovich A, Redlich M, et al. (2011). Alleviating fatigue and failure of NiTi endodontic files by a coating containing inorganic fullerene like WS2 nanoparticles. J Mater Res. Vol.26, no. 10, p. 1234-1242.
  • Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, et al. (2010). Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod vol. 36, no. 2, p.322-328. doi: 10.1016/j.joen.2009.10.011.
  • Alabdulmohsen ZA, Saad AY. (2017). Antibacterial effect of silver nanoparticles against Enterococcus faecalis. Saudi Endod J. Vol.7, p.29-35.
  • Oncu A, Huang Y, Amasya G, Sevimay FS, Orhan K, Celikten B. (2021). Silver nanoparticles in endodontics: recent developments and applications. Restor Dent Endod. Vol.46(3):e38. doi: 10.5395/rde.2021.46.e38.
  • Torabinejad M, Handysides R, Khademi AA, Bakland LK. (2002). Clinical implications of the smear layer in endodontics: A review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. Vol.94, no. 6, p.658-666. doi: 10.1067/moe.2002.128962.
  • Kishen A, Upadya M, Tegos GP, Hamblin MR. (2010). Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol. Vol. 86, no.6, p.1343-1349. doi: 10.1111/j.1751-1097.2010.00792.x.
  • Afkhami F, Akbari S, Chiniforush N. (2017). Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study. J Endod. Vol. 43, no.2, p.279–282. doi: 10.1016/j.joen.2016.08.029.
  • Kishen A, Shi Z, Shrestha A, Neoh KG. (2008). An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. Vol. 34, no.12, p. 1515–1520. doi: 10.1016/j.joen.2008.08.035.
  • del Carpio-Perochena A, Kishen A, Shrestha A, Bramante CM. (2015) Antibacterial properties associated with chitosan nanoparticle treatment on root dentin and 2 types of endodontic sealers. J Endod. vol. 41, no.8, p.1353-1358. doi: 10.1016/j.joen.2015.03.020.
  • Lee DK, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang CY, Shi W, Hong C, Tetradis S, Kim Y, Park NH. (2015). Nanodiamond–gutta percha composite biomaterials for root canal therapy. ACS Nano. Vol.9, no.11, p.11490–11501. doi: 10.1021/acsnano.5b05718.
  • Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. (2011). Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. Vol.5, no.5, p. 3693–3700. doi: 10.1021/nn200021j.
  • Barreras US, Mendez FT, Martinez RE, et al. (2016). Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C Mater Biol Appl. Vol.58, p. 1182–1187. doi: 10.1016/j.msec.2015.09.085.
  • Guerreiro-Tanomaru JM, Trindade-Junior A, Cesar Costa B, da Silva GF, Drullis Cifali L, Basso Bernardi MI, Tanomaru-Filho M. (2014) Effect of zirconium oxide and zinc oxide nanoparticles on physicochemical properties and antibiofilm activity of a calcium silicate-based material. Sci World J. p. 975213:1–6. Doi: 10.1155/2014/975213.
  • Waltimo T, Mohn D, Paque F, Brunner TJ, Stark WJ, Imfeld T, Schätzle M, Zehnder M. (2009). Fine-tuning of bioactive glass for root canal disinfection. J Dent Res. Vol.88, no.3, p.235–238. doi: 10.1177/0022034508330315.
  • Wu C, Chang J, Fan W. (2012). Bioactive mesoporous calcium–silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J Mater Chem. Vol. 22, no. 33, p. 16801–16809.
  • Khetawat S, Lodha S. (2015). Nanotechnology (nanohydroxyapatite crystals): recent advancement in treatment of dentinal hypersensitivity. J Interdiscipl Med Dent Sci. Vol.3, p. 181.
  • Slenters TV, Hauser-Gerspach I, Daniels AU, Fromm KM. (2008). Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. J Mater Chem. Vol. 18, no. 44, p. 5359–5362.
  • Percival SL, Bowler PG, Russell D. (2005). Bacterial resistance to silver in wound care. J Hosp Infect. Vol. 60, no. 1, p.1–7. doi: 10.1016/j.jhin.2004.11.014.
  • Sathyanarayanan MB, Balachandranath R, Genji Srinivasulu Y, Kannaiyan SK,Subbiahdoss G. (2013). The effect of gold and iron-oxide nanoparticles on biofilmforming pathogens. ISRN Microbiol. ISRN Microbiol. 2013;2013:272086.1–11. Doi: 10.1155/2013/272086
  • Lughi V, Sergo V. (2010). Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. Vol. 26, no. 8, p. 807–820. doi: 10.1016/j.dental.2010.04.006.
  • Ramesh TR, Gangaiah M, Harish PV, Krishnakumar U, Nandakishore B. (2012). Zirconia Ceramics as a Dental Biomaterial--An Over view. Trends Biomater Artific Organs. Vol. 26, no.3, p. 154–160.
  • Hu C, Sun J, Long C, Wu L, Zhou C, Zhang X. (2019). Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol Rev. Vol. 8, no. 1, p.396–404.
  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. (2011). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. Vol. 6, no.8, p.933–940. doi: 10.2217/fmb.11.78.
  • Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R. (2013). Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Inf Epidemiol Microbiol. Vol. 1, no.1, p. 33–38.
  • Roy AS, Parveen A, Koppalkar AR, Prasad MA. (2010). Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol. Vol.1, no. 1, p.37.
  • Yamamoto O, Ohira T, Alvarez K, Fukuda M. (2010). Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B. Vol. 173, no.1–3, p. 208–212.
  • Jin T, He Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanoparticle Res. vol. 13, no. 12, p. 6877–6885.
  • Ahamed M, Alhadlaq HA, Khan MM, Karuppiah P, Aldhabi NA. (2014). Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nanomater. Vol. 2014, p.1–4.
  • Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD. (2008). Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci. Vol.3, p. 185–193.
There are 46 citations in total.

Details

Primary Language English
Subjects Intelligent Robotics
Journal Section Review Articles
Authors

Feyza Ozdemır Kısacık 0000-0001-5229-9575

Publication Date December 31, 2023
Acceptance Date September 11, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Ozdemır Kısacık, F. (2023). Nanotechnology in Endodontics: Advancing and Efficacy in Root Canal Therapy. Scientific Journal of Mehmet Akif Ersoy University, 6(2), 14-18.