EXPERIMENTAL INVESTIGATION OF THE EFFECT OF THE CHARGE AMOUNT ON THE POWER CONSUMPTION AND COOLING PERFORMANCE OF A REFRIGERATION SYSTEM
Year 2023,
Volume: 6 Issue: 2, 64 - 70, 31.12.2023
Faraz Afshari
,
Azim Doğuş Tuncer
,
Afşin Güngör
Abstract
Refrigeration systems are mechanical devices that transfer heat from a low-temperature region to a high-temperature region, effectively cooling a space or substance. They operate based on the principles of thermodynamics, utilizing refrigerants to extract heat from the area being cooled and then expelling it elsewhere. These systems play a crucial role in maintaining suitable temperatures for various applications across industries. The choice of refrigerant and system design significantly impacts efficiency, environmental impact, and overall performance. This study investigates the impact of refrigerant gas charge amounts on the performance of these systems. Two different charge amounts including 340 g and 425 g have been utilized in a refrigeration system that use R134a as refrigerant gas. The experimental process has been performed in a controlled environment. Analyzing the relationship between the quantity of refrigerant gas and system efficiency, this research aims to provide insights into optimizing charge levels to enhance the overall performance and energy efficiency of refrigeration systems. Experimental results showed that increasing the refrigerant charge amount from 340 g to 425 g reduced the hourly energy consumption from 0.322 kWh to 0.306 kWh. Moreover, the average coefficient of performance (COP) values were attained as 3.94 and 4.04, respectively for the charge amounts of 340 g and 425 g. The findings contribute to a deeper understanding of the intricate dynamics between refrigerant gas charge amounts and system functionality, offering potential strategies for improved system design and operation.
Thanks
The experimental investigations in this article were carried out with Kristal Endüstriyel A.Ş. within the scope of the project titled "Increasing the efficiency of industrial type monoblock refrigerators". We would like to thank Mr. Ramazan Kaynakçı, Chairman of the Board of Directors of Kristal Endüstriyel A.Ş., Kristal Endüstriyel R&D team and Kristal Endüstriyel A.Ş. for their great support within the scope of the study.
References
- Şirin, C., Tuncer, A. D., & Khanlari, A. (2023). Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment. Sustainability vol. 15(21) p. 15192. DOI: 10.3390/su152115192
- Amjith, L. R., & Bavanish, B. (2022). A review on biomass and wind as renewable energy for sustainable environment. Chemosphere vol. 293 p. 133579. DOI: 10.1016/j.chemosphere.2022.133579
- Şirin, C., Goggins, J., & Hajdukiewicz, M. (2023). A review on building-integrated photovoltaic/thermal systems for green buildings. Applied Thermal Engineering, 120607. doi: 10.1016/j.applthermaleng.2023.120607
- Çolak, A., Çelik, A., Mandev, E., Muratçobanoğlu, B., Gülmüş, B., Afshari, F., & Ceviz, M. A. (2023). Study on a novel inclined solar water distillation system using thermoelectric module for condensation. Process Safety and Environmental Protection, 177, 986-994. doi: 10.1016/j.psep.2023.07.051
- Hu, H., Wang, T., Jiang, Y., Bi, C., Zhang, B., Fan, S., & Guo, C. (2023). Thermodynamic performance of heat pump with R1234ze (E)/R1336mzz (E) binary refrigerant. Applied Thermal Engineering, 230, 120795. doi: 10.1016/j.applthermaleng.2023.120795
- Fernández-Moreno, A., Mota-Babiloni, A., Gimenez-Prades, P., & Navarro-Esbrí, J. (2022). Optimal refrigerant mixture in single-stage high-temperature heat pumps based on a multiparameter evaluation. Sustainable Energy Technologies and Assessments, 52, 101989. doi: 10.1016/j.seta.2022.101989
- Sanchez-Moreno-Giner, L., Methler, T., Barcelo-Ruescas, F., & Gonzalvez-Macia, J. (2023). Refrigerant charge distribution in brine-to-water heat pump using R290 as refrigerant. International Journal of Refrigeration, 145, 158-167. doi: 10.1016/j.ijrefrig.2022.10.013
- Navarro-Esbrí, J., Fernández-Moreno, A., & Mota-Babiloni, A. (2022). Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization. Energy, 254, 124308. doi: 10.1016/j.energy.2022.124308
- Sezen, K., & Gungor, A. (2023). Comparison of solar assisted heat pump systems for heating residences: A review. Solar Energy, 249, 424-445. doi: 10.1016/j.solener.2022.11.051
- Santhappan, J. S., Raveendran Padmavathy, S., Chockalingam, M. P., Al-Shahri, A. S. A., & Glivin, G. (2023). Performance analysis of a solar-driven domestic refrigerator working with eco-friendly refrigerants in continuous power outage areas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 11384-11398. doi: 10.1080/15567036.2023.2258835
- Khanlari, A., Sözen, A., Sahin, B., Di Nicola, G., & Afshari, F. (2020). Experimental investigation on using building shower drain water as a heat source for heat pump systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13. doi: 10.1080/15567036.2020.1796845
- Obalanlege, M. A., Mahmoudi, Y., Douglas, R., Ebrahimnia-Bajestan, E., Davidson, J., & Bailie, D. (2020). Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity. Renewable Energy, 148, 558-572. doi: 10.1016/j.renene.2019.10.061
- Gilani, H. A., Hoseinzadeh, S., Karimi, H., Karimi, A., Hassanzadeh, A., & Garcia, D. A. (2021). Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island. Renewable Energy, 174, 1006-1019. doi: 10.1016/j.energy.2022.123819
- Li, M. Y., Li, B., Liu, C., Su, S., Xiao, H., & Zhu, C. (2020). Design and experimental investigation of a phase change energy storage air-type solar heat pump heating system. Applied Thermal Engineering, 179, 115506. doi: 10.1016/j.applthermaleng.2020.115506
- Zhou, J., Ma, X., Zhao, X., Yuan, Y., Yu, M., & Li, J. (2020). Numerical simulation and experimental validation of a micro-channel PV/T modules based direct-expansion solar heat pump system. Renewable Energy, 145, 1992-2004. doi: 10.1016/j.renene.2019.07.049
- Ran, S., Lyu, W., Li, X., Xu, W., & Wang, B. (2020). A solar-air source heat pump with thermosiphon to efficiently utilize solar energy. Journal of Building Engineering, 31, 101330. doi: 10.1016/j.jobe.2020.101330
- Afshari, F., Sahin, B., Khanlari, A., & Manay, E. (2020). Experimental optimization and investigation of compressor cooling fan in an air-to-water heat pump. Heat Transfer Research, 51(4), 319-331. doi: 10.1615/HeatTransRes.2019030709
- Afshari, F., Khanlari, A., Tuncer, A. D., & Sözen, A. (2023). An Experimental Investigation to Predict Optimum Charge of A Heat Pump System. Heat Transfer Research, 54(5), 1-13. doi: 10.1615/HeatTransRes.2022044669
- Ceviz, M. A., Afshari, F., Ceylan, M., Muratçobanoğlu, B., Mandev, E., & Gelen, G. (2023). Experimental Study to Evaluate Effect of Source Temperature on COP and Compressor Status in Water-to-Air Heat Pumps. Heat Transfer Research, 54(16). doi: 10.1615/HeatTransRes.2023048436
- Afshari, F., Sözen, A., Khanlari, A., Tuncer, A., & Ali, H. (2021). Experimental investigation of effect of refrigerant gases, compressor lubricant and operating conditions on performance of a heat pump. Journal of Central South University, 28(11), 3556–3568. doi: 10.1007/s11771-021-4875-7
- Di Nicola, G., Coccia, G., Pierantozzi, M., & Tomassetti, S. (2018). Vapor-liquid equilibrium of binary systems containing low GWP refrigerants with cubic equations of state. Energy Procedia, 148, 1246-1253. doi: 10.1016/j.seta.2022.101989
- Pierantozzi, M., Tomassetti, S., & Di Nicola, G. (2020). Climate change and refrigerants: Thermodynamic properties of low-GWP fluids for domestic applications and binary systems for low-temperature options. Applied Sciences, 10(6), 2014. doi: 10.3390/app10062014
- Baskaran, A., Manikandan, N., Jule, L., Nagaprasad, N., Saka, A., Badassa, B., & Seenivasan, V. (2022). Influence of capillary tube length on the performance of domestic refrigerator with eco-friendly refrigerant R152a. Scientific Reports, 12(1), 14460. doi: 10.1038/s41598-022-18606-w
Year 2023,
Volume: 6 Issue: 2, 64 - 70, 31.12.2023
Faraz Afshari
,
Azim Doğuş Tuncer
,
Afşin Güngör
References
- Şirin, C., Tuncer, A. D., & Khanlari, A. (2023). Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment. Sustainability vol. 15(21) p. 15192. DOI: 10.3390/su152115192
- Amjith, L. R., & Bavanish, B. (2022). A review on biomass and wind as renewable energy for sustainable environment. Chemosphere vol. 293 p. 133579. DOI: 10.1016/j.chemosphere.2022.133579
- Şirin, C., Goggins, J., & Hajdukiewicz, M. (2023). A review on building-integrated photovoltaic/thermal systems for green buildings. Applied Thermal Engineering, 120607. doi: 10.1016/j.applthermaleng.2023.120607
- Çolak, A., Çelik, A., Mandev, E., Muratçobanoğlu, B., Gülmüş, B., Afshari, F., & Ceviz, M. A. (2023). Study on a novel inclined solar water distillation system using thermoelectric module for condensation. Process Safety and Environmental Protection, 177, 986-994. doi: 10.1016/j.psep.2023.07.051
- Hu, H., Wang, T., Jiang, Y., Bi, C., Zhang, B., Fan, S., & Guo, C. (2023). Thermodynamic performance of heat pump with R1234ze (E)/R1336mzz (E) binary refrigerant. Applied Thermal Engineering, 230, 120795. doi: 10.1016/j.applthermaleng.2023.120795
- Fernández-Moreno, A., Mota-Babiloni, A., Gimenez-Prades, P., & Navarro-Esbrí, J. (2022). Optimal refrigerant mixture in single-stage high-temperature heat pumps based on a multiparameter evaluation. Sustainable Energy Technologies and Assessments, 52, 101989. doi: 10.1016/j.seta.2022.101989
- Sanchez-Moreno-Giner, L., Methler, T., Barcelo-Ruescas, F., & Gonzalvez-Macia, J. (2023). Refrigerant charge distribution in brine-to-water heat pump using R290 as refrigerant. International Journal of Refrigeration, 145, 158-167. doi: 10.1016/j.ijrefrig.2022.10.013
- Navarro-Esbrí, J., Fernández-Moreno, A., & Mota-Babiloni, A. (2022). Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization. Energy, 254, 124308. doi: 10.1016/j.energy.2022.124308
- Sezen, K., & Gungor, A. (2023). Comparison of solar assisted heat pump systems for heating residences: A review. Solar Energy, 249, 424-445. doi: 10.1016/j.solener.2022.11.051
- Santhappan, J. S., Raveendran Padmavathy, S., Chockalingam, M. P., Al-Shahri, A. S. A., & Glivin, G. (2023). Performance analysis of a solar-driven domestic refrigerator working with eco-friendly refrigerants in continuous power outage areas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 11384-11398. doi: 10.1080/15567036.2023.2258835
- Khanlari, A., Sözen, A., Sahin, B., Di Nicola, G., & Afshari, F. (2020). Experimental investigation on using building shower drain water as a heat source for heat pump systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13. doi: 10.1080/15567036.2020.1796845
- Obalanlege, M. A., Mahmoudi, Y., Douglas, R., Ebrahimnia-Bajestan, E., Davidson, J., & Bailie, D. (2020). Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity. Renewable Energy, 148, 558-572. doi: 10.1016/j.renene.2019.10.061
- Gilani, H. A., Hoseinzadeh, S., Karimi, H., Karimi, A., Hassanzadeh, A., & Garcia, D. A. (2021). Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island. Renewable Energy, 174, 1006-1019. doi: 10.1016/j.energy.2022.123819
- Li, M. Y., Li, B., Liu, C., Su, S., Xiao, H., & Zhu, C. (2020). Design and experimental investigation of a phase change energy storage air-type solar heat pump heating system. Applied Thermal Engineering, 179, 115506. doi: 10.1016/j.applthermaleng.2020.115506
- Zhou, J., Ma, X., Zhao, X., Yuan, Y., Yu, M., & Li, J. (2020). Numerical simulation and experimental validation of a micro-channel PV/T modules based direct-expansion solar heat pump system. Renewable Energy, 145, 1992-2004. doi: 10.1016/j.renene.2019.07.049
- Ran, S., Lyu, W., Li, X., Xu, W., & Wang, B. (2020). A solar-air source heat pump with thermosiphon to efficiently utilize solar energy. Journal of Building Engineering, 31, 101330. doi: 10.1016/j.jobe.2020.101330
- Afshari, F., Sahin, B., Khanlari, A., & Manay, E. (2020). Experimental optimization and investigation of compressor cooling fan in an air-to-water heat pump. Heat Transfer Research, 51(4), 319-331. doi: 10.1615/HeatTransRes.2019030709
- Afshari, F., Khanlari, A., Tuncer, A. D., & Sözen, A. (2023). An Experimental Investigation to Predict Optimum Charge of A Heat Pump System. Heat Transfer Research, 54(5), 1-13. doi: 10.1615/HeatTransRes.2022044669
- Ceviz, M. A., Afshari, F., Ceylan, M., Muratçobanoğlu, B., Mandev, E., & Gelen, G. (2023). Experimental Study to Evaluate Effect of Source Temperature on COP and Compressor Status in Water-to-Air Heat Pumps. Heat Transfer Research, 54(16). doi: 10.1615/HeatTransRes.2023048436
- Afshari, F., Sözen, A., Khanlari, A., Tuncer, A., & Ali, H. (2021). Experimental investigation of effect of refrigerant gases, compressor lubricant and operating conditions on performance of a heat pump. Journal of Central South University, 28(11), 3556–3568. doi: 10.1007/s11771-021-4875-7
- Di Nicola, G., Coccia, G., Pierantozzi, M., & Tomassetti, S. (2018). Vapor-liquid equilibrium of binary systems containing low GWP refrigerants with cubic equations of state. Energy Procedia, 148, 1246-1253. doi: 10.1016/j.seta.2022.101989
- Pierantozzi, M., Tomassetti, S., & Di Nicola, G. (2020). Climate change and refrigerants: Thermodynamic properties of low-GWP fluids for domestic applications and binary systems for low-temperature options. Applied Sciences, 10(6), 2014. doi: 10.3390/app10062014
- Baskaran, A., Manikandan, N., Jule, L., Nagaprasad, N., Saka, A., Badassa, B., & Seenivasan, V. (2022). Influence of capillary tube length on the performance of domestic refrigerator with eco-friendly refrigerant R152a. Scientific Reports, 12(1), 14460. doi: 10.1038/s41598-022-18606-w