Research Article
BibTex RIS Cite

Yapay Zekâ Destekli Ürünlerde Müşteri Deneyimi Nasıl Ölçülür? Türkiye’ye Özgü Bir Ölçek Uyarlaması

Year 2025, Volume: 6 Issue: 1, 119 - 146, 26.03.2025
https://doi.org/10.54733/smar.1602880

Abstract

Yapay zekâ, müşteri deneyimlerini kişiselleştirmek ve yenilikçi hizmetler sunmak amacıyla günümüzde ticari ürünlerin yaygın bir özelliği haline gelmektedir. Ancak, hızla gelişen yapay zekâ destekli ürünler bağlamında müşteri deneyimini ölçmeye yönelik ulusal literatürde uygun bir ölçme aracına rastlanılmamıştır. Bu çalışma Yapay Zekâ Destekli Ürünlerde Müşteri Deneyimi Ölçeğinin Türkçeye uyarlanmasını amaçlamaktadır. Özgün ölçek, beş boyutta gruplanan 18 maddeden oluşmaktadır. Ölçeğin geçerliliği ve güvenirliği teknoloji yoğun bir sektör olan havacılık bağlamında incelenmiştir. Çalışma kapsamında, yapay zekâ destekli ürünlerle deneyimi olan 539 havayolu yolcusundan elde edilen veriler analiz edilmiştir. Yapılan analizler sonucunda, antropomorfik deneyim boyutunun istatistiksel olarak anlamlı olmadığı belirlenmiş ve ölçek yapısından çıkarılmıştır. Ölçek veri toplama, sınıflandırma, yetkilendirme, sosyal deneyim olmak üzere dört boyutlu ve 15 maddeli olarak Türkçeye uyarlanmıştır. Uyarlanan ölçeğin, bireylerin yapay zekâ destekli ürünler bağlamındaki müşteri deneyimlerini değerlendirmede geçerli ve güvenilir bir ölçüm aracı olduğu ortaya konulmuştur.

References

  • Agrawal, A. (2017). How AI will change the way we make decisions. Harvard Business Review.
  • Aleksander, I. (2004). Advances in intelligent information technology: re-branding or progress towards conscious machines?. Journal of Information Technology, 19(1), 21-27. https://doi.org/10.1057/palgrave.jit.2000001
  • Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548
  • Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019). Customer relationship management and big data enabled: Personalization & customization of services. Applied Computing and Informatics, 15(2), 94-101. https://doi.org/10.1016/j.aci.2018.05.004
  • Arreza, M. K. B. (2022). The quality of service and user satisfaction of airline chatbots. Journal of Business on Hospitality and Tourism, 8(1), 197-215. https://doi.org/10.22334/jbhost.v8i1.346
  • Aru, J., Larkum, M. E., & Shine, J. M. (2023). The feasibility of artificial consciousness through the lens of neuroscience. Trends in Neurosciences, 46(12), 1008-1017. https://doi.org/10.1016/j.tins.2023.09.009
  • Balaji, M. S., & Roy, S. K. (2017). Value co-creation with Internet of things technology in the retail industry. Journal of Marketing Management, 33(1-2), 7-31. https://doi.org/10.1080/0267257X.2016.1217914
  • Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual review of Psychology, 52, 1-26. https://doi.org/10.1146/annurev.psych.52.1.1
  • Bawack, R. E., Fosso Wamba, S., & Carillo, K. D. A. (2021). A framework for understanding artificial intelligence research: Insights from practice. Journal of Enterprise Information Management, 34(2), 645-678. https://doi.org/10.1108/JEIM-07-2020-0284
  • Berry, L. L. Carbone, L. P., & Haeckel, S. H. (2002). Managing the total customer experience. MIT Sloan Management Review, 43(3), 85-89.
  • Bhagat, R., Chauhan, V., & Bhagat, P. (2023). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. Foresight, 25(2), 249-263. https://doi.org/10.1108/FS-10-2021-0218
  • Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., & Zaki, M. (2018). Customer experience challenges: Bringing together digital, physical and social realms. Journal of Service Management, 29(5), 776-808. https://doi.org/10.1108/JOSM-04-2018-0113
  • Butlin, P., Long, R., Elmoznino, E., Bengio, Y., Birch, J., Constant, A., Deane, G., Fleming, S. M., Frith, C., Ji, X., Kanai, R., Klein, C., Lindsay, G., Michel, M., Mudrik, L., Peters, M. A. K., Schwitzgebel, E., Simon, J., & VanRullen, R. (2023). Consciousness in artificial intelligence: insights from the science of consciousness. arXiv. https://doi.org/10.48550/arXiv.2308.08708
  • Byrne, B. M. (2010). Testing for the factorial validity of a theoretical construct. Structural equation modeling with AMOS: Basic concepts, applications, and programming (Second edition). Routledge.
  • Calvo, A. V., Franco, A. D., & Frasquet, M. (2023). The role of artificial intelligence in improving the omnichannel customer experience. International Journal of Retail & Distribution Management, 51(9/10), 1174-1194. https://doi.org/10.1108/IJRDM-12-2022-0493
  • Carbone, L. P., & Haeckel, S. H. (1994). Engineering customer experiences. Marketing Management, 3(3), 8-19.
  • Cesur, M., & Armutcu, B. (2023). Yapay zekânin yeşil ürün satın alma davranışına etkisi. Kamu Ekonomisi ve Kamu Mali Yönetimi Dergisi, 3(2), 39-54.
  • Chandra, S., Shirish, A., & Srivastava, S. C. (2022). To be or not to be …Human? Theorizing the role of human-like competencies in conversational artificial intelligence agents. Journal of Management Information Systems, 39(4), 969-1005. https://doi.org/10.1080/07421222.2022.2127441
  • Charlesworth, A. (2018). Digital marketing – A practical approach (Third edition). Routledge.
  • Chen, J. S., Le, T. T. Y., & Florence, D. (2021). Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing. International Journal of Retail & Distribution Management, 49(11), 1512-1531. https://doi.org/10.1108/IJRDM-08-2020-0312
  • Chiu, M. C., & Chuang, K. H. (2021). Applying transfer learning to achieve precision marketing in an omni-channel system – A case study of a sharing kitchen platform. International Journal of Production Research, 59(24), 7594-7609. https://doi.org/10.1080/00207543.2020.1868595
  • Çokluk, Ö., Şekercioğlu, G., & Büyüköztürk, Ş. (2018). Sosyal bilimler için çok değişkenli istatistik: SPSS ve LISREL uygulamaları (Beşinci baskı). PEGEM-Akademi.
  • Çopur, T. M. (2014). Yeni ürün geliştirme sürecinde kitlesel kişiselleştirme yaklaşımının etkisi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi.
  • Davis, F. D. (1989). Technology acceptance model: TAM. In M. N. Al-Suqri, & A. S. Al-Aufi (Eds.), Information Seeking Behavior and Technology Adoption (pp. 205-219). IGI Global.
  • DeVellis, R. F. (2016). Scale development: Theory and applications (Fourth edition). SAGE Publications.
  • Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719-734. https://doi.org/10.1007/s10796-017-9774-y
  • Efendioğlu, İ. H. (2023). Yapay zekâ pazarlaması: İnternetten yapılan alışverişlerde yapay zekânın satın alma niyetine etkisi. Turkish Studies-Economics, Finance, Politics, 18(1), 133-153. https://doi.org/10.7827/TurkishStudies.66785
  • EY. (2024). Geleceğin Tüketicisi Endeksi 2024 - Bölüm 2. EY. https://www.ey.com/tr_tr/news/2024/8/ey-gelecegin-tuketicisi-endeksi-2024-bolum-2 (Erişim Tarihi: 20 Şubat 2025).
  • Field, A. (2018). Discovering statistics using IBM SPSS statistics (Fifth edition). SAGE Publications.
  • Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. In S. Carta (Ed.), Machine learning and the city: Applications in architecture and urban design (pp. 535-545). Wiley. https://doi.org/10.1002/9781119815075.ch45
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Frank, B., Herbas-Torrico, B., & Schvaneveldt, S. J. (2021). The AI-extended consumer: Technology, consumer, country differences in the formation of demand for AI-empowered consumer products. Technological Forecasting and Social Change, 172, 121018. https://doi.org/10.1016/j.techfore.2021.121018
  • Fridh, D., & Dahl, T. (2019). A consumer perspective of personalized marketing An exploratory study on consumer perception of personalized marketing and how it affects the purchase decision making [Bachelor’s thesis]. Kristianstad University.
  • Gentile, C., Spiller, N., & Noci, G. (2007). How to sustain the customer experience: An overview of experience components that co-create value with the customer. European Management Journal, 25(5), 395-410. https://doi.org/10.1016/j.emj.2007.08.005
  • Gündüz, C. (2023). Customised holiday experiences through artificial intelligence: Case studies from the aviation and hospitality sectors. Journal of Aviation, 7(3), 337-345. https://doi.org/10.30518/jav.1351472
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (Eighth edition). Cengage Learning.
  • Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132. https://doi.org/10.1016/j.ijin.2022.08.005
  • Hambleton, R. K., & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. Journal of Applied Testing Technology, August 1999, 1-13.
  • Hoffman, D. L., & Novak, T. (2015). Emergent experience and the connected consumer in the smart home assemblage and the internet of things. SSRN. https://dx.doi.org/10.2139/ssrn.2648786
  • Hoffman, D. L., & Novak, T. P. (2018). Consumer and object experience in the internet of things: An assemblage theory approach. Journal of Consumer Research, 44(6), 1178-1204. https://doi.org/10.1093/jcr/ucx105
  • Hoyer, W. D., Kroschke, M., Schmitt, B., Kraume, K., & Shankar, V. (2020). Transforming the customer experience through new technologies. Journal of Interactive Marketing, 51(1), 57-71. https://doi.org/10.1016/j.intmar.2020.04.001
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Huang, M., & Rust, R. (2020). Engaged to a robot? The role of AI in service. Journal of Service Research, 24(1), 30-41. https://doi.org/10.1177/1094670520902266
  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575
  • Kamoonpuri, S. Z., & Sengar, A. (2023). Hi, may AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail. Journal of Retailing and Consumer Services, 72, 103258. https://doi.org/10.1016/j.jretconser.2023.103258
  • Kavenius, E. (2020). The use of personalized marketing content [Bachelor’s Thesis]. Haaga-Helia University of Applied Sciences.
  • Keiningham, T., Ball, J., Benoit, S., Bruce, H. L., Buoye, A., Dzenkovska, J., Nasr, L., Ou, Y., C., & Zaki, M. (2017). The interplay of customer experience and commitment. Journal of Services Marketing, 31(2), 148-160. https://doi.org/10.1108/JSM-09-2016-0337
  • Khanagha, S., Volberda, H., & Oshri, I. (2017). Customer co-creation and exploration of emerging technologies: The mediating role of managerial attention and initiatives. Long Range Planning, 50(2), 221-242. https://doi.org/10.1016/j.lrp.2015.12.019
  • Klaus, P., & Maklan, S. (2011). Bridging the gap for destination extreme sports: A model of sports tourism customer experience. Journal of Marketing Management, 27(13-14), 1341-1365. https://doi.org/10.1080/0267257X.2011.624534
  • Kline, R. S. (2011). Principles and practice of structural equation modeling. The Guilford Press.
  • Kumar, M. (2022). Optimized application of artificial intelligence (AI) in aviation market. International Journal of Recent Research Aspects, 9(4), 1-7.
  • Lam, S. Y. (2001). The effects of store environment on shopping behaviors: A critical review. In M. C. Gilly, & J. Meyers-Levy (Eds.), Advances in consumer research (Vol. 28, pp. 190-197). Association for Consumer Research.
  • Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420
  • Li, D., He, W., & Guo, Y. (2021). Why AI still doesn't have consciousness?. CAAI Transactions on Intelligence Technology, 6(2), 175-179. https://doi.org/10.1049/cit2.12035
  • Meydan Türkiye. (2024). Bu rapor müşteri trendlerine ışık tutuyor: Türkiye memnuniyette küreselin altında. Meydan Türkiye. https://www.meydanturkiye.com/haber/bu-rapor-musteri-trendlerine-isik-tutuyor-turkiye-memnuniyette-kureselin-altinda-15775 (Erişim Tarihi: 20 Şubat 2025).
  • Munro, B. H. (2005). Statistical methods for health care research. Lippincott Williams & Wilkins.
  • Nalini, R. (2024). Transformative power of artificial intelligence in decision-making, automation, and customer engagement. In P. C. N. Figueiredo (Ed.), Complex AI dynamics and interactions in management (pp. 189-208). IGI Global.
  • Nguyen, T. M., Quach, S., & Thaichon, P. (2022). The effect of AI quality on customer experience and brand relationship. Journal of Consumer Behaviour, 21(3), 481-493. https://doi.org/10.1002/cb.1974
  • Novak, T. P., & Hoffman, D. L. (2019). Relationship journeys in the internet of things: a new framework for understanding interactions between consumers and smart objects. Journal of the Academy of Marketing Science, 47, 216-237. https://doi.org/10.1007/s11747-018-0608-3
  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (Third edition). McGraw-Hill.
  • Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.1177/002224378001700405
  • Pappas, I. O., Kourouthanassis, P. E., Giannakos, M. N., & Chrissikopoulos, V. (2014). Shiny happy people buying: The role of emotions on personalized e-shopping. Electronic Markets, 24, 193-206. https://doi.org/10.1007/s12525-014-0153-y
  • Paschek, D., Mocan, A., Dufour, C. M., & Draghici, A. (2017). Organizational knowledge management with Big Data. The foundation of using artificial intelligence. In 8th Balkan Region Conference on Engineering and Business Education and 10th International Conference on Engineering and Business Education. De Gruyter (Open).
  • Paschen, J., Kietzmann, J., & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410-1419. https://doi.org/10.1108/JBIM-10-2018-0295
  • Pine, B. J., & Gilmore, J. H. (1999). The experience economy: Work is theatre & every business a stage, Harvard Business Press.
  • Prentice, C., Dominique Lopes, S., & Wang, X. (2020). The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. Journal of Hospitality Marketing & Management, 29(7), 739-756. https://doi.org/10.1080/19368623.2020.1722304
  • Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and artificial intelligence: An experiential perspective. Journal of Marketing, 85(1), 131-151. https://doi.org/10.1177/0022242920953847
  • Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms: Toward human-AI hybrids. Mis Quarterly, 43(1), 3-9.
  • Rane, N., Paramesha, M., Choudhary, S., & Rane, J. (2024). Artificial intelligence in sales and marketing: Enhancing customer satisfaction, experience and loyalty. Experience and Loyalty. https://dx.doi.org/10.2139/ssrn.4831903
  • Rawat, Y., Gupta, Y., Khothari, G., Mittal, A., & Rautela, D. (2023). The role of artificial intelligence in biometrics. In 2023 2nd international conference on edge computing and applications (ICECAA) (pp. 622-626). IEEE. https://doi.org/10.1109/ICECAA58104.2023.10212224
  • Rouhani, S., Ashrafi, A., Zare Ravasan, A., & Afshari, S. (2016). The impact model of business intelligence on decision support and organizational benefits. Journal of Enterprise Information Management, 29(1), 19-50. https://doi.org/10.1108/JEIM-12-2014-0126
  • Saponaro, M., Le Gal, D., Gao, M., Guisiano, M., & Maniere, I. C. (2018). Challenges and opportunities of artificial intelligence in the fashion world. In 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC) (pp. 1-5). IEEE. https://doi.org/10.1109/ICONIC.2018.8601258
  • Satheesh, M., & Nagaraj, S. (2021). Applications of artificial intelligence on customer experience and service quality of the banking sector. International Management Review, 17(1), 9-17.
  • Schmitt, B. H. (1999). Experiential marketing. Journal of Marketing Management, 15(1-3), 53-67. https://doi.org/10.1362/026725799784870496
  • Schuetz, S., & Venkatesh, V. (2020). The rise of human machines: How cognitive computing systems challenge assumptions of user-system interaction. Journal of the Association for Information Systems, 21(2), 460-482. https://doi.org/10.17705/1jais.00608
  • Schumacher, R. E., & Lomax, R. G. (2010). A beginner's guide to structural equation modeling (Third edition). Routledge Taylor & Francis Group.
  • Seçer, İ. (2018). Psikolojik test geliştirme ve uyarlama süreci: SPSS ve LISREL uygulamaları. Anı yayıncılık.
  • Shabbir, J., & Anwer, T. (2018). Artificial intelligence and its role in near future. arXiv. https://doi.org/10.48550/arXiv.1804.01396
  • Singh, J., Flaherty, K., Sohi, R. S., Deeter-Schmelz, D., Habel, J., Le Meunier-FitzHugh, K., Malshe, A., Mullins, R., & Onyemah, V. (2019). Sales profession and professionals in the age of digitization and artificial intelligence technologies: concepts, priorities, and questions. Journal of Personal Selling & Sales Management, 39(1), 2-22. https://doi.org/10.1080/08853134.2018.1557525
  • Sirapracha, J., & Tocquer, G. (2012). Branding and customer experience in the wireless telecommunication industry. International Journal of Trade, Economics and Finance, 3(2), 103-108. https://doi.org/10.7763/IJTEF.2012.V3.181
  • Şeker, H., & Gençdoğan, B. (2014). Psikolojide ve eğitimde ölçme aracı geliştirme (2. baskı). Nobel Yayınları.
  • Şencan, H. (2005). Sosyal ve davranışsal ölçümlerde güvenilirlik ve geçerlilik. Seçkin.
  • Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (Seventh edition). Pearson.
  • TAV. (2020). Artificial intelligence in aviation industry. TAV Technologies. https://tavtechnologies.aero/en-EN/review/pages/artificial-intelligence-in-aviation-industry (Erişim Tarihi: 01 Aralık 2024).
  • Trawnih, A., Al-Masaeed, S., Alsoud, M., & Alkufahy, A. (2022). Understanding artificial intelligence experience: A customer perspective. International Journal of Data and Network Science, 6(4), 1471-1484. http://dx.doi.org/10.5267/j.ijdns.2022.5.004
  • Tschang, F. T., & Almirall, E. (2021). Artificial intelligence as augmenting automation: Implications for employment. Academy of Management Perspectives, 35(4), 642-659. https://doi.org/10.5465/amp.2019.0062
  • Tung, T. M., & Lan, D. H. (2024). AI-powered customer experience: Personalization, engagement, and intelligent decision-making in CRM. Journal of Electrical Systems, 20(5s), 55-71. https://doi.org/10.52783/jes.1832
  • Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer experience creation: Determinants, dynamics and management strategies. Journal of Retailing, 85(1), 31-41. https://doi.org/10.1016/j.jretai.2008.11.001
  • Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002
  • Wanasinghe, T. R., Galagedarage Don, M., Arunthavanathan, R., & Gosine, R. G. (2022). Industry 4.0 based process data analytics platform. Methods in Chemical Process Safety, 6, 101-137. https://doi.org/10.1016/bs.mcps.2022.04.008
  • Wang, P., Li, K., Du, Q., & Wang, J. (2023). Customer experience in AI-enabled products: Scale development and validation. Journal of Retailing and Consumer Services, 76, 103578. https://doi.org/10.1016/j.jretconser.2023.103578
  • Wilson, L. (2019). Data-driven marketing content (First edition). Emerald Publishing Limited.
  • Woodward, P. (2022). Consciousness and rationality: The lesson from artificial intelligence. Journal of Consciousness Studies, 29(5-6), 150-175. https://doi.org/10.53765/20512201.29.5.150
  • Yang, S. (2023). Machine learning-based airline passenger satisfaction evaluation. In 2023 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC) (pp. 11-15). IEEE. https://doi.org/10.1109/IIoTBDSC60298.2023.00012
  • Zhang, S., Meng, Z., Chen, B., Yang, X., & Zhao, X. (2021). Motivation, social emotion, and the acceptance of artificial intelligence virtual assistants—Trust-based mediating effects. Frontiers in Psychology, 12, 728495. https://doi.org/10.3389/fpsyg.2021.728495

How to Measure Customer Experience in AI-Enabled Products? A Scale Adaptation for the Turkish Context

Year 2025, Volume: 6 Issue: 1, 119 - 146, 26.03.2025
https://doi.org/10.54733/smar.1602880

Abstract

Artificial intelligence is now a common feature of commercial products, with the objective of personalizing customer experiences and delivering innovative services. Nevertheless, no appropriate instrument for assessing customer experience in the context of AI-enabled products has been identified in the national literature. The aim of the study was to adapt the customer experience scale for AI-enabled products into Turkish. The original scale comprises 18 items, which are grouped into five dimensions. The scale was evaluated for its validity and reliability within the context of the aviation sector, which is a technology-intensive industry. The data were collected from a sample of 539 airline passengers who had experience using AI-enabled products. Following the analyses, the anthropomorphic experience dimension was found to be statistically insignificant and removed from the structure. The scale was adapted into Turkish with four dimensions -data capture, classification, delegation, and social experience- comprising 15 items. The findings indicated that the adapted scale is a valid and reliable instrument for evaluating customer experiences with AI-enabled products.

References

  • Agrawal, A. (2017). How AI will change the way we make decisions. Harvard Business Review.
  • Aleksander, I. (2004). Advances in intelligent information technology: re-branding or progress towards conscious machines?. Journal of Information Technology, 19(1), 21-27. https://doi.org/10.1057/palgrave.jit.2000001
  • Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548
  • Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019). Customer relationship management and big data enabled: Personalization & customization of services. Applied Computing and Informatics, 15(2), 94-101. https://doi.org/10.1016/j.aci.2018.05.004
  • Arreza, M. K. B. (2022). The quality of service and user satisfaction of airline chatbots. Journal of Business on Hospitality and Tourism, 8(1), 197-215. https://doi.org/10.22334/jbhost.v8i1.346
  • Aru, J., Larkum, M. E., & Shine, J. M. (2023). The feasibility of artificial consciousness through the lens of neuroscience. Trends in Neurosciences, 46(12), 1008-1017. https://doi.org/10.1016/j.tins.2023.09.009
  • Balaji, M. S., & Roy, S. K. (2017). Value co-creation with Internet of things technology in the retail industry. Journal of Marketing Management, 33(1-2), 7-31. https://doi.org/10.1080/0267257X.2016.1217914
  • Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual review of Psychology, 52, 1-26. https://doi.org/10.1146/annurev.psych.52.1.1
  • Bawack, R. E., Fosso Wamba, S., & Carillo, K. D. A. (2021). A framework for understanding artificial intelligence research: Insights from practice. Journal of Enterprise Information Management, 34(2), 645-678. https://doi.org/10.1108/JEIM-07-2020-0284
  • Berry, L. L. Carbone, L. P., & Haeckel, S. H. (2002). Managing the total customer experience. MIT Sloan Management Review, 43(3), 85-89.
  • Bhagat, R., Chauhan, V., & Bhagat, P. (2023). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. Foresight, 25(2), 249-263. https://doi.org/10.1108/FS-10-2021-0218
  • Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., & Zaki, M. (2018). Customer experience challenges: Bringing together digital, physical and social realms. Journal of Service Management, 29(5), 776-808. https://doi.org/10.1108/JOSM-04-2018-0113
  • Butlin, P., Long, R., Elmoznino, E., Bengio, Y., Birch, J., Constant, A., Deane, G., Fleming, S. M., Frith, C., Ji, X., Kanai, R., Klein, C., Lindsay, G., Michel, M., Mudrik, L., Peters, M. A. K., Schwitzgebel, E., Simon, J., & VanRullen, R. (2023). Consciousness in artificial intelligence: insights from the science of consciousness. arXiv. https://doi.org/10.48550/arXiv.2308.08708
  • Byrne, B. M. (2010). Testing for the factorial validity of a theoretical construct. Structural equation modeling with AMOS: Basic concepts, applications, and programming (Second edition). Routledge.
  • Calvo, A. V., Franco, A. D., & Frasquet, M. (2023). The role of artificial intelligence in improving the omnichannel customer experience. International Journal of Retail & Distribution Management, 51(9/10), 1174-1194. https://doi.org/10.1108/IJRDM-12-2022-0493
  • Carbone, L. P., & Haeckel, S. H. (1994). Engineering customer experiences. Marketing Management, 3(3), 8-19.
  • Cesur, M., & Armutcu, B. (2023). Yapay zekânin yeşil ürün satın alma davranışına etkisi. Kamu Ekonomisi ve Kamu Mali Yönetimi Dergisi, 3(2), 39-54.
  • Chandra, S., Shirish, A., & Srivastava, S. C. (2022). To be or not to be …Human? Theorizing the role of human-like competencies in conversational artificial intelligence agents. Journal of Management Information Systems, 39(4), 969-1005. https://doi.org/10.1080/07421222.2022.2127441
  • Charlesworth, A. (2018). Digital marketing – A practical approach (Third edition). Routledge.
  • Chen, J. S., Le, T. T. Y., & Florence, D. (2021). Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing. International Journal of Retail & Distribution Management, 49(11), 1512-1531. https://doi.org/10.1108/IJRDM-08-2020-0312
  • Chiu, M. C., & Chuang, K. H. (2021). Applying transfer learning to achieve precision marketing in an omni-channel system – A case study of a sharing kitchen platform. International Journal of Production Research, 59(24), 7594-7609. https://doi.org/10.1080/00207543.2020.1868595
  • Çokluk, Ö., Şekercioğlu, G., & Büyüköztürk, Ş. (2018). Sosyal bilimler için çok değişkenli istatistik: SPSS ve LISREL uygulamaları (Beşinci baskı). PEGEM-Akademi.
  • Çopur, T. M. (2014). Yeni ürün geliştirme sürecinde kitlesel kişiselleştirme yaklaşımının etkisi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi.
  • Davis, F. D. (1989). Technology acceptance model: TAM. In M. N. Al-Suqri, & A. S. Al-Aufi (Eds.), Information Seeking Behavior and Technology Adoption (pp. 205-219). IGI Global.
  • DeVellis, R. F. (2016). Scale development: Theory and applications (Fourth edition). SAGE Publications.
  • Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719-734. https://doi.org/10.1007/s10796-017-9774-y
  • Efendioğlu, İ. H. (2023). Yapay zekâ pazarlaması: İnternetten yapılan alışverişlerde yapay zekânın satın alma niyetine etkisi. Turkish Studies-Economics, Finance, Politics, 18(1), 133-153. https://doi.org/10.7827/TurkishStudies.66785
  • EY. (2024). Geleceğin Tüketicisi Endeksi 2024 - Bölüm 2. EY. https://www.ey.com/tr_tr/news/2024/8/ey-gelecegin-tuketicisi-endeksi-2024-bolum-2 (Erişim Tarihi: 20 Şubat 2025).
  • Field, A. (2018). Discovering statistics using IBM SPSS statistics (Fifth edition). SAGE Publications.
  • Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. In S. Carta (Ed.), Machine learning and the city: Applications in architecture and urban design (pp. 535-545). Wiley. https://doi.org/10.1002/9781119815075.ch45
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Frank, B., Herbas-Torrico, B., & Schvaneveldt, S. J. (2021). The AI-extended consumer: Technology, consumer, country differences in the formation of demand for AI-empowered consumer products. Technological Forecasting and Social Change, 172, 121018. https://doi.org/10.1016/j.techfore.2021.121018
  • Fridh, D., & Dahl, T. (2019). A consumer perspective of personalized marketing An exploratory study on consumer perception of personalized marketing and how it affects the purchase decision making [Bachelor’s thesis]. Kristianstad University.
  • Gentile, C., Spiller, N., & Noci, G. (2007). How to sustain the customer experience: An overview of experience components that co-create value with the customer. European Management Journal, 25(5), 395-410. https://doi.org/10.1016/j.emj.2007.08.005
  • Gündüz, C. (2023). Customised holiday experiences through artificial intelligence: Case studies from the aviation and hospitality sectors. Journal of Aviation, 7(3), 337-345. https://doi.org/10.30518/jav.1351472
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (Eighth edition). Cengage Learning.
  • Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132. https://doi.org/10.1016/j.ijin.2022.08.005
  • Hambleton, R. K., & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. Journal of Applied Testing Technology, August 1999, 1-13.
  • Hoffman, D. L., & Novak, T. (2015). Emergent experience and the connected consumer in the smart home assemblage and the internet of things. SSRN. https://dx.doi.org/10.2139/ssrn.2648786
  • Hoffman, D. L., & Novak, T. P. (2018). Consumer and object experience in the internet of things: An assemblage theory approach. Journal of Consumer Research, 44(6), 1178-1204. https://doi.org/10.1093/jcr/ucx105
  • Hoyer, W. D., Kroschke, M., Schmitt, B., Kraume, K., & Shankar, V. (2020). Transforming the customer experience through new technologies. Journal of Interactive Marketing, 51(1), 57-71. https://doi.org/10.1016/j.intmar.2020.04.001
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Huang, M., & Rust, R. (2020). Engaged to a robot? The role of AI in service. Journal of Service Research, 24(1), 30-41. https://doi.org/10.1177/1094670520902266
  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575
  • Kamoonpuri, S. Z., & Sengar, A. (2023). Hi, may AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail. Journal of Retailing and Consumer Services, 72, 103258. https://doi.org/10.1016/j.jretconser.2023.103258
  • Kavenius, E. (2020). The use of personalized marketing content [Bachelor’s Thesis]. Haaga-Helia University of Applied Sciences.
  • Keiningham, T., Ball, J., Benoit, S., Bruce, H. L., Buoye, A., Dzenkovska, J., Nasr, L., Ou, Y., C., & Zaki, M. (2017). The interplay of customer experience and commitment. Journal of Services Marketing, 31(2), 148-160. https://doi.org/10.1108/JSM-09-2016-0337
  • Khanagha, S., Volberda, H., & Oshri, I. (2017). Customer co-creation and exploration of emerging technologies: The mediating role of managerial attention and initiatives. Long Range Planning, 50(2), 221-242. https://doi.org/10.1016/j.lrp.2015.12.019
  • Klaus, P., & Maklan, S. (2011). Bridging the gap for destination extreme sports: A model of sports tourism customer experience. Journal of Marketing Management, 27(13-14), 1341-1365. https://doi.org/10.1080/0267257X.2011.624534
  • Kline, R. S. (2011). Principles and practice of structural equation modeling. The Guilford Press.
  • Kumar, M. (2022). Optimized application of artificial intelligence (AI) in aviation market. International Journal of Recent Research Aspects, 9(4), 1-7.
  • Lam, S. Y. (2001). The effects of store environment on shopping behaviors: A critical review. In M. C. Gilly, & J. Meyers-Levy (Eds.), Advances in consumer research (Vol. 28, pp. 190-197). Association for Consumer Research.
  • Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420
  • Li, D., He, W., & Guo, Y. (2021). Why AI still doesn't have consciousness?. CAAI Transactions on Intelligence Technology, 6(2), 175-179. https://doi.org/10.1049/cit2.12035
  • Meydan Türkiye. (2024). Bu rapor müşteri trendlerine ışık tutuyor: Türkiye memnuniyette küreselin altında. Meydan Türkiye. https://www.meydanturkiye.com/haber/bu-rapor-musteri-trendlerine-isik-tutuyor-turkiye-memnuniyette-kureselin-altinda-15775 (Erişim Tarihi: 20 Şubat 2025).
  • Munro, B. H. (2005). Statistical methods for health care research. Lippincott Williams & Wilkins.
  • Nalini, R. (2024). Transformative power of artificial intelligence in decision-making, automation, and customer engagement. In P. C. N. Figueiredo (Ed.), Complex AI dynamics and interactions in management (pp. 189-208). IGI Global.
  • Nguyen, T. M., Quach, S., & Thaichon, P. (2022). The effect of AI quality on customer experience and brand relationship. Journal of Consumer Behaviour, 21(3), 481-493. https://doi.org/10.1002/cb.1974
  • Novak, T. P., & Hoffman, D. L. (2019). Relationship journeys in the internet of things: a new framework for understanding interactions between consumers and smart objects. Journal of the Academy of Marketing Science, 47, 216-237. https://doi.org/10.1007/s11747-018-0608-3
  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (Third edition). McGraw-Hill.
  • Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.1177/002224378001700405
  • Pappas, I. O., Kourouthanassis, P. E., Giannakos, M. N., & Chrissikopoulos, V. (2014). Shiny happy people buying: The role of emotions on personalized e-shopping. Electronic Markets, 24, 193-206. https://doi.org/10.1007/s12525-014-0153-y
  • Paschek, D., Mocan, A., Dufour, C. M., & Draghici, A. (2017). Organizational knowledge management with Big Data. The foundation of using artificial intelligence. In 8th Balkan Region Conference on Engineering and Business Education and 10th International Conference on Engineering and Business Education. De Gruyter (Open).
  • Paschen, J., Kietzmann, J., & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410-1419. https://doi.org/10.1108/JBIM-10-2018-0295
  • Pine, B. J., & Gilmore, J. H. (1999). The experience economy: Work is theatre & every business a stage, Harvard Business Press.
  • Prentice, C., Dominique Lopes, S., & Wang, X. (2020). The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. Journal of Hospitality Marketing & Management, 29(7), 739-756. https://doi.org/10.1080/19368623.2020.1722304
  • Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and artificial intelligence: An experiential perspective. Journal of Marketing, 85(1), 131-151. https://doi.org/10.1177/0022242920953847
  • Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms: Toward human-AI hybrids. Mis Quarterly, 43(1), 3-9.
  • Rane, N., Paramesha, M., Choudhary, S., & Rane, J. (2024). Artificial intelligence in sales and marketing: Enhancing customer satisfaction, experience and loyalty. Experience and Loyalty. https://dx.doi.org/10.2139/ssrn.4831903
  • Rawat, Y., Gupta, Y., Khothari, G., Mittal, A., & Rautela, D. (2023). The role of artificial intelligence in biometrics. In 2023 2nd international conference on edge computing and applications (ICECAA) (pp. 622-626). IEEE. https://doi.org/10.1109/ICECAA58104.2023.10212224
  • Rouhani, S., Ashrafi, A., Zare Ravasan, A., & Afshari, S. (2016). The impact model of business intelligence on decision support and organizational benefits. Journal of Enterprise Information Management, 29(1), 19-50. https://doi.org/10.1108/JEIM-12-2014-0126
  • Saponaro, M., Le Gal, D., Gao, M., Guisiano, M., & Maniere, I. C. (2018). Challenges and opportunities of artificial intelligence in the fashion world. In 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC) (pp. 1-5). IEEE. https://doi.org/10.1109/ICONIC.2018.8601258
  • Satheesh, M., & Nagaraj, S. (2021). Applications of artificial intelligence on customer experience and service quality of the banking sector. International Management Review, 17(1), 9-17.
  • Schmitt, B. H. (1999). Experiential marketing. Journal of Marketing Management, 15(1-3), 53-67. https://doi.org/10.1362/026725799784870496
  • Schuetz, S., & Venkatesh, V. (2020). The rise of human machines: How cognitive computing systems challenge assumptions of user-system interaction. Journal of the Association for Information Systems, 21(2), 460-482. https://doi.org/10.17705/1jais.00608
  • Schumacher, R. E., & Lomax, R. G. (2010). A beginner's guide to structural equation modeling (Third edition). Routledge Taylor & Francis Group.
  • Seçer, İ. (2018). Psikolojik test geliştirme ve uyarlama süreci: SPSS ve LISREL uygulamaları. Anı yayıncılık.
  • Shabbir, J., & Anwer, T. (2018). Artificial intelligence and its role in near future. arXiv. https://doi.org/10.48550/arXiv.1804.01396
  • Singh, J., Flaherty, K., Sohi, R. S., Deeter-Schmelz, D., Habel, J., Le Meunier-FitzHugh, K., Malshe, A., Mullins, R., & Onyemah, V. (2019). Sales profession and professionals in the age of digitization and artificial intelligence technologies: concepts, priorities, and questions. Journal of Personal Selling & Sales Management, 39(1), 2-22. https://doi.org/10.1080/08853134.2018.1557525
  • Sirapracha, J., & Tocquer, G. (2012). Branding and customer experience in the wireless telecommunication industry. International Journal of Trade, Economics and Finance, 3(2), 103-108. https://doi.org/10.7763/IJTEF.2012.V3.181
  • Şeker, H., & Gençdoğan, B. (2014). Psikolojide ve eğitimde ölçme aracı geliştirme (2. baskı). Nobel Yayınları.
  • Şencan, H. (2005). Sosyal ve davranışsal ölçümlerde güvenilirlik ve geçerlilik. Seçkin.
  • Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (Seventh edition). Pearson.
  • TAV. (2020). Artificial intelligence in aviation industry. TAV Technologies. https://tavtechnologies.aero/en-EN/review/pages/artificial-intelligence-in-aviation-industry (Erişim Tarihi: 01 Aralık 2024).
  • Trawnih, A., Al-Masaeed, S., Alsoud, M., & Alkufahy, A. (2022). Understanding artificial intelligence experience: A customer perspective. International Journal of Data and Network Science, 6(4), 1471-1484. http://dx.doi.org/10.5267/j.ijdns.2022.5.004
  • Tschang, F. T., & Almirall, E. (2021). Artificial intelligence as augmenting automation: Implications for employment. Academy of Management Perspectives, 35(4), 642-659. https://doi.org/10.5465/amp.2019.0062
  • Tung, T. M., & Lan, D. H. (2024). AI-powered customer experience: Personalization, engagement, and intelligent decision-making in CRM. Journal of Electrical Systems, 20(5s), 55-71. https://doi.org/10.52783/jes.1832
  • Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer experience creation: Determinants, dynamics and management strategies. Journal of Retailing, 85(1), 31-41. https://doi.org/10.1016/j.jretai.2008.11.001
  • Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002
  • Wanasinghe, T. R., Galagedarage Don, M., Arunthavanathan, R., & Gosine, R. G. (2022). Industry 4.0 based process data analytics platform. Methods in Chemical Process Safety, 6, 101-137. https://doi.org/10.1016/bs.mcps.2022.04.008
  • Wang, P., Li, K., Du, Q., & Wang, J. (2023). Customer experience in AI-enabled products: Scale development and validation. Journal of Retailing and Consumer Services, 76, 103578. https://doi.org/10.1016/j.jretconser.2023.103578
  • Wilson, L. (2019). Data-driven marketing content (First edition). Emerald Publishing Limited.
  • Woodward, P. (2022). Consciousness and rationality: The lesson from artificial intelligence. Journal of Consciousness Studies, 29(5-6), 150-175. https://doi.org/10.53765/20512201.29.5.150
  • Yang, S. (2023). Machine learning-based airline passenger satisfaction evaluation. In 2023 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC) (pp. 11-15). IEEE. https://doi.org/10.1109/IIoTBDSC60298.2023.00012
  • Zhang, S., Meng, Z., Chen, B., Yang, X., & Zhao, X. (2021). Motivation, social emotion, and the acceptance of artificial intelligence virtual assistants—Trust-based mediating effects. Frontiers in Psychology, 12, 728495. https://doi.org/10.3389/fpsyg.2021.728495
There are 95 citations in total.

Details

Primary Language Turkish
Subjects Marketing Management
Journal Section Research Articles
Authors

Arif Tuncal 0000-0003-4343-6261

Publication Date March 26, 2025
Submission Date December 17, 2024
Acceptance Date March 19, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Tuncal, A. (2025). Yapay Zekâ Destekli Ürünlerde Müşteri Deneyimi Nasıl Ölçülür? Türkiye’ye Özgü Bir Ölçek Uyarlaması. Sosyal Mucit Academic Review, 6(1), 119-146. https://doi.org/10.54733/smar.1602880