Research Article
BibTex RIS Cite

Meme Kanseri Hücrelerinde TRAF2 ve NCK Etkileşimli Protein Kinaz (TNIK) İnhibisyonunun Kanser Karşıtı Etkisinin Değerlendirilmesi

Year 2024, Volume: 14 Issue: 4, 398 - 406, 31.12.2024
https://doi.org/10.31832/smj.1593181

Abstract

Amaç: Bu çalışmanın amacı, TNIK inhibitörü olan NCB-0846'nın MCF-7 hücrelerindeki antikanser etkisini değerlendirmek ve gen düzeyinde NF-κB ve TNFA ifade seviyeleri üzerindeki etkisini değerlendirmektir.
Materyal ve Metot: MCF-7 hücre hattı, %10 fetal sığır serumu (FBS) ve antibiyotiklerle (50 IU/mL penisilin ve 50 mg/mL streptomisin) desteklenmiş Dulbecco's Modified Eagle Medium (DMEM) kullanılarak %5 CO2 atmosferinde 37°C'de kültüre edildi. Hücre canlılığı, NCB-0846'nın sitotoksik etkisini belirlemek için CCK-8 testi kullanılarak analiz edildi. Akridin Oranj/Propidyum İyodür (AO/PI) boyama, NCB-0846'nın MCF-7 hücre hattındaki hücresel morfoloji üzerindeki etkisini değerlendirmek için gerçekleştirildi. Toplam RNA, NCB-0846 ile tedavi edilen hücrelerden izole edildi. Veri analizi SPSS 22.0 istatistik programı kullanılarak gerçekleştirildi.
Bulgular: Veriler, NCB-0846'nın MCF-7 hücrelerinin canlılık oranlarını doza bağlı bir şekilde önemli ölçüde azalttığını gösterdi (1-3 µM, p<0,01). RT-PCR analizi, etkili doz ve sürede NCB-0846 ile tedavi edilen MCF-7 hücrelerinde NFKB1 ekspresyon düzeyinin kontrol grubuna kıyasla 5,4 kat arttığını ortaya koydu (p<0,01). Buna karşılık, TNFA ekspresyon düzeyi kontrol grubuna kıyasla 0,4 kat azaldı (p<0,01).
Sonuç: Sonuçlar, NCB-0846'nın MCF-7 hücrelerinde inflamatuar sinyal yollarıyla ilişkili olan NFKB1 ve TNFA genlerinin mRNA düzeylerinde değişikliklere neden olduğunu göstermektedir. Ancak, NCB-0846'nın meme kanseri ve diğer kanser türlerindeki inflamasyon üzerindeki etkisini açıklığa kavuşturmak için daha fazla moleküler analiz gereklidir.

Project Number

TÜBİTAK-2209-A/1919B012312269

References

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7-33. doi:10.3322/caac.21708
  • Baguley CB, Leung E. Heterogeneity of Phenotype in Breast Cancer Cell Lines. Breast Cancer - Carcinogenesis, Cell Growth and Signalling Pathways. 2011;245-256. InTech. Available at: http://dx.doi.org/10.5772/21984. Accessed on September 10, 2024
  • Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022 Nov;72(6):524-541. doi:10.3322/caac.21754
  • Sweeney EE, McDaniel RE, Maximov PY, Fan P, Jordan VC. Models and Mechanisms of Acquired Antihormone Resistance in Breast Cancer: Significant Clinical Progress Despite Limitations. Horm Mol Biol Clin Investig. 2012 Feb;9(2):143-163. doi:10.1515/hmbci-2011-0004
  • Telang NT. The Divergent Effects of Ovarian Steroid Hormones in the MCF-7 Model for Luminal a Breast Cancer: Mechanistic Leads for Therapy. Int J Mol Sci. 2022 Apr 27;23(9):4800. doi:10.3390/ijms23094800
  • Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med Press). 2019 Mar 7;11:115-135. doi:10.2147/BCTT.S189224
  • Shen RR, Zhou AY, Kim E, O'Connell JT, Hagerstrand D, Beroukhim R, et al. TRAF2 is an NF-κB-activating oncogene in epithelial cancers. Oncogene. 2015 Jan 8;34(2):209-16. doi:10.1038/onc.2013.543
  • Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011 Feb;21(2):223-44. doi: 10.1038/cr.2011.13
  • Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001 Oct 1;20(44):6482-91. doi:10.1038/sj.onc.1204788
  • Liu Y, Liu K, Huang Y, Sun M, Tian Q, Zhang S, et al. TRIM25 Promotes TNF-α-Induced NF-κB Activation through Potentiating the K63-Linked Ubiquitination of TRAF2. J Immunol. 2020 Mar 15;204(6):1499-1507. doi:10.4049/jimmunol.1900482
  • Koni M, Pinnarò V, Brizzi MF. The Wnt Signalling Pathway: A Tailored Target in Cancer. Int J Mol Sci. 2020 Oct 18;21(20):7697. doi: 10.3390/ijms21207697
  • Teng Y, Wu R, Bo W, Tang M, Wang T, Cui X, et al. Fragment growth-based discovery of novel TNIK inhibitors for the treatment of colorectal cancer. Eur J Med Chem. 2024 Mar 15;268:116240. doi: 10.1016/j.ejmech.2024.116240
  • Sugano T, Masuda M, Takeshita F, Motoi N, Hirozane T, Goto N, et al. Pharmacological blockage of transforming growth factor-β signalling by a Traf2- and Nck-interacting kinase inhibitor, NCB-0846. Br J Cancer. 2021 Jan;124(1):228-236.
  • Masuda M, Uno Y, Ohbayashi N, Ohata H, Mimata A, Kukimoto-Niino M, et al. TNIK inhibition abrogates colorectal cancer stemness. Nat Commun. 2016 Aug 26;7:12586. doi:10.1038/ncomms12586
  • Jung HR, Oh Y, Na D, Min S, Kang J, Jang D, et al. CRISPR screens identify a novel combination treatment targeting BCL-XL and WNT signaling for KRAS/BRAF-mutated colorectal cancers. Oncogene. 2021 May;40(18):3287-3302.
  • Sekita T, Yamada T, Kobayashi E, Yoshida A, Hirozane T, Kawai A, et al. Feasibility of Targeting Traf2-and-Nck-Interacting Kinase in Synovial Sarcoma. Cancers (Basel). 2020 May 16;12(5):1258. doi:10.3390/cancers12051258
  • Zhang R, Yu Y, Yang Y, Zhang M, Zhang X, Chang Y, et al. Therapeutic targeting of TNIK in papillary thyroid carcinoma: A novel approach for tumor growth suppression. Med Oncol. 2024 May 20;41(6):160. doi:10.1007/s12032-024-02380-y
  • Nguyen T, Carrieri FA, Connis N, Lafargue A, Chang J, Chan A, et al. TNIK Inhibition Sensitizes TNIK-Overexpressing Lung Squamous Cell Carcinoma to Radiotherapy. Mol Cancer Ther. 2024 Jun 10:OF1-OF11. doi:10.1158/1535-7163.MCT-23-0412
  • Wang M, Gu Y, Li Q, Feng B, Lv X, Zhang H, et al. The Traf2 and NcK interacting kinase inhibitor NCB-0846 suppresses seizure activity involving the decrease of GRIA1. Genes Dis. 2023 Jun 24;11(3):100997. doi:10.1016/j.gendis.2023.03.036
  • Teng Y, Wu R, Bo W, Tang M, Wang T, Cui X, et al. Fragment growth-based discovery of novel TNIK inhibitors for the treatment of colorectal cancer. Eur J Med Chem. 2024 Mar 15;268:116240. doi:10.1016/j.ejmech.2024.116240
  • Sugano T, Masuda M, Takeshita F, Motoi N, Hirozane T, Goto N, et al. Pharmacological blockage of transforming growth factor-β signalling by a Traf2- and Nck-interacting kinase inhibitor, NCB-0846. Br J Cancer. 2021 Jan;124(1):228-236.
  • Jiang N, Guo T, Wang M, Liao Y, Ma F, Gao J, et al. TNIK swaths AR to WNT pathway and drives Castration-Resistant Prostate Cancer. Research Square; 2020. doi:10.21203/rs.3.rs-18207/v1
  • Li Z, Lim SK, Liang X, Lim YP. The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway. The Journal of Biological Chemistry. 2018 Dec;293(52):20014-20028.
  • Balkwill F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 2006 Sep;25(3):409-16. doi:10.1007/s10555-006-9005-3
  • Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020 Feb;43(1):1-18.
  • Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol. 2018 Aug 9;9:1849.
  • Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel). 2017 Mar 28;9(4):119. doi: 10.3390/toxins9040119
  • Kim J, Moon SH, Kim BT, Chae CH, Lee JY, Kim SH. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells. PLoS One. 2014 Oct 22;9(10):e110180. doi:10.1371/journal.pone.0110180
  • Sato K, Padgaonkar AA, Baker SJ, Cosenza SC, Rechkoblit O, Subbaiah DRCV, et al. Simultaneous CK2/TNIK/DYRK1 inhibition by 108600 suppresses triple negative breast cancer stem cells and chemotherapy-resistant disease. Nat Commun. 2021 Aug 3;12(1):4671. doi: 10.1038/s41467-021-24878-z
  • Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2020 Jul 18;8(3):287-297.
  • Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023–. doi:10.1038/sigtrans.2017.23
  • Umekawa M, Klionsky DJ. The Cytoplasm-to-Vacuole Targeting Pathway: A Historical Perspective. Int J Cell Biol. 2012;2012:142634. doi:10.1155/2012/142634
  • Hu G, Huang N, Zhang J, Zhang D, Wang S, Zhang Y, et al. LKB1 loss promotes colorectal cancer cell metastasis through regulating TNIK expression and actin cytoskeleton remodeling. Mol Carcinog. 2023 Nov;62(11):1659-1672.
  • May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 2012 May 2;1(1):7. doi: 10.1186/2046-2530-1-7

Evaluation of the Anti-Cancer Effect of TRAF2 and NCK In teracting Protein Kinase (TNIK) Inhibition in Breast Cancer Cells

Year 2024, Volume: 14 Issue: 4, 398 - 406, 31.12.2024
https://doi.org/10.31832/smj.1593181

Abstract

Objective: This study aimed to evaluate the anticancer effect of NCB-0846, a TNIK inhibitor, in MCF-7 cells and to assess its impact on the expression levels of NF-κB and TNFA at the gene level. Materials and Methods: The MCF-7 cell line was cultured at 37°C in a 5% CO2 atmosphere using Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and antibiotics (50 IU/mL penicillin and 50 mg/mL streptomycin). Cell viability was analyzed using the CCK-8 assay to determine the cytotoxic effect of NCB- 0846. Acridine Orange/Propidium Iodide (AO/PI) staining was performed to evaluate the effect of NCB-0846 on cellular morphology in the MCF-7 cell line. Total RNA was isolated from cells treated with NCB-0846. Data analysis was performed using the SPSS 22.0 statistical program.
Results: The data indicated that NCB-0846 significantly decreased the viability rates of MCF-7 cells in a dose-dependent manner (1-3 μM, p<0.01). RT-PCR analysis revealed that the expression level of NFKB1 increased 5.4-fold compared to the control group in MCF-7 cells treated with NCB-0846 at the effective dose and duration (p<0.01). In contrast, the expression level of TNFA decreased to 0.4-fold compared to the control group (p<0.01).
Conclusion: The results demonstrate that NCB-0846 induces changes in the mRNA levels of the NFKB1 and TNFA genes, which are associated with inflammatory signalling pathways in MCF-7 cells. However, further molecular analyses are necessary to clarify the effect of NCB-0846 on inflammation in breast cancer and other cancer types.

Project Number

TÜBİTAK-2209-A/1919B012312269

References

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7-33. doi:10.3322/caac.21708
  • Baguley CB, Leung E. Heterogeneity of Phenotype in Breast Cancer Cell Lines. Breast Cancer - Carcinogenesis, Cell Growth and Signalling Pathways. 2011;245-256. InTech. Available at: http://dx.doi.org/10.5772/21984. Accessed on September 10, 2024
  • Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022 Nov;72(6):524-541. doi:10.3322/caac.21754
  • Sweeney EE, McDaniel RE, Maximov PY, Fan P, Jordan VC. Models and Mechanisms of Acquired Antihormone Resistance in Breast Cancer: Significant Clinical Progress Despite Limitations. Horm Mol Biol Clin Investig. 2012 Feb;9(2):143-163. doi:10.1515/hmbci-2011-0004
  • Telang NT. The Divergent Effects of Ovarian Steroid Hormones in the MCF-7 Model for Luminal a Breast Cancer: Mechanistic Leads for Therapy. Int J Mol Sci. 2022 Apr 27;23(9):4800. doi:10.3390/ijms23094800
  • Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med Press). 2019 Mar 7;11:115-135. doi:10.2147/BCTT.S189224
  • Shen RR, Zhou AY, Kim E, O'Connell JT, Hagerstrand D, Beroukhim R, et al. TRAF2 is an NF-κB-activating oncogene in epithelial cancers. Oncogene. 2015 Jan 8;34(2):209-16. doi:10.1038/onc.2013.543
  • Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011 Feb;21(2):223-44. doi: 10.1038/cr.2011.13
  • Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001 Oct 1;20(44):6482-91. doi:10.1038/sj.onc.1204788
  • Liu Y, Liu K, Huang Y, Sun M, Tian Q, Zhang S, et al. TRIM25 Promotes TNF-α-Induced NF-κB Activation through Potentiating the K63-Linked Ubiquitination of TRAF2. J Immunol. 2020 Mar 15;204(6):1499-1507. doi:10.4049/jimmunol.1900482
  • Koni M, Pinnarò V, Brizzi MF. The Wnt Signalling Pathway: A Tailored Target in Cancer. Int J Mol Sci. 2020 Oct 18;21(20):7697. doi: 10.3390/ijms21207697
  • Teng Y, Wu R, Bo W, Tang M, Wang T, Cui X, et al. Fragment growth-based discovery of novel TNIK inhibitors for the treatment of colorectal cancer. Eur J Med Chem. 2024 Mar 15;268:116240. doi: 10.1016/j.ejmech.2024.116240
  • Sugano T, Masuda M, Takeshita F, Motoi N, Hirozane T, Goto N, et al. Pharmacological blockage of transforming growth factor-β signalling by a Traf2- and Nck-interacting kinase inhibitor, NCB-0846. Br J Cancer. 2021 Jan;124(1):228-236.
  • Masuda M, Uno Y, Ohbayashi N, Ohata H, Mimata A, Kukimoto-Niino M, et al. TNIK inhibition abrogates colorectal cancer stemness. Nat Commun. 2016 Aug 26;7:12586. doi:10.1038/ncomms12586
  • Jung HR, Oh Y, Na D, Min S, Kang J, Jang D, et al. CRISPR screens identify a novel combination treatment targeting BCL-XL and WNT signaling for KRAS/BRAF-mutated colorectal cancers. Oncogene. 2021 May;40(18):3287-3302.
  • Sekita T, Yamada T, Kobayashi E, Yoshida A, Hirozane T, Kawai A, et al. Feasibility of Targeting Traf2-and-Nck-Interacting Kinase in Synovial Sarcoma. Cancers (Basel). 2020 May 16;12(5):1258. doi:10.3390/cancers12051258
  • Zhang R, Yu Y, Yang Y, Zhang M, Zhang X, Chang Y, et al. Therapeutic targeting of TNIK in papillary thyroid carcinoma: A novel approach for tumor growth suppression. Med Oncol. 2024 May 20;41(6):160. doi:10.1007/s12032-024-02380-y
  • Nguyen T, Carrieri FA, Connis N, Lafargue A, Chang J, Chan A, et al. TNIK Inhibition Sensitizes TNIK-Overexpressing Lung Squamous Cell Carcinoma to Radiotherapy. Mol Cancer Ther. 2024 Jun 10:OF1-OF11. doi:10.1158/1535-7163.MCT-23-0412
  • Wang M, Gu Y, Li Q, Feng B, Lv X, Zhang H, et al. The Traf2 and NcK interacting kinase inhibitor NCB-0846 suppresses seizure activity involving the decrease of GRIA1. Genes Dis. 2023 Jun 24;11(3):100997. doi:10.1016/j.gendis.2023.03.036
  • Teng Y, Wu R, Bo W, Tang M, Wang T, Cui X, et al. Fragment growth-based discovery of novel TNIK inhibitors for the treatment of colorectal cancer. Eur J Med Chem. 2024 Mar 15;268:116240. doi:10.1016/j.ejmech.2024.116240
  • Sugano T, Masuda M, Takeshita F, Motoi N, Hirozane T, Goto N, et al. Pharmacological blockage of transforming growth factor-β signalling by a Traf2- and Nck-interacting kinase inhibitor, NCB-0846. Br J Cancer. 2021 Jan;124(1):228-236.
  • Jiang N, Guo T, Wang M, Liao Y, Ma F, Gao J, et al. TNIK swaths AR to WNT pathway and drives Castration-Resistant Prostate Cancer. Research Square; 2020. doi:10.21203/rs.3.rs-18207/v1
  • Li Z, Lim SK, Liang X, Lim YP. The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway. The Journal of Biological Chemistry. 2018 Dec;293(52):20014-20028.
  • Balkwill F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 2006 Sep;25(3):409-16. doi:10.1007/s10555-006-9005-3
  • Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020 Feb;43(1):1-18.
  • Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol. 2018 Aug 9;9:1849.
  • Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel). 2017 Mar 28;9(4):119. doi: 10.3390/toxins9040119
  • Kim J, Moon SH, Kim BT, Chae CH, Lee JY, Kim SH. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells. PLoS One. 2014 Oct 22;9(10):e110180. doi:10.1371/journal.pone.0110180
  • Sato K, Padgaonkar AA, Baker SJ, Cosenza SC, Rechkoblit O, Subbaiah DRCV, et al. Simultaneous CK2/TNIK/DYRK1 inhibition by 108600 suppresses triple negative breast cancer stem cells and chemotherapy-resistant disease. Nat Commun. 2021 Aug 3;12(1):4671. doi: 10.1038/s41467-021-24878-z
  • Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2020 Jul 18;8(3):287-297.
  • Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023–. doi:10.1038/sigtrans.2017.23
  • Umekawa M, Klionsky DJ. The Cytoplasm-to-Vacuole Targeting Pathway: A Historical Perspective. Int J Cell Biol. 2012;2012:142634. doi:10.1155/2012/142634
  • Hu G, Huang N, Zhang J, Zhang D, Wang S, Zhang Y, et al. LKB1 loss promotes colorectal cancer cell metastasis through regulating TNIK expression and actin cytoskeleton remodeling. Mol Carcinog. 2023 Nov;62(11):1659-1672.
  • May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 2012 May 2;1(1):7. doi: 10.1186/2046-2530-1-7
There are 34 citations in total.

Details

Primary Language English
Subjects Medical Genetics (Excl. Cancer Genetics)
Journal Section Research Article
Authors

Selin Zeynep Özçelik 0009-0001-8862-4883

Kaan Furkan Hamarat 0000-0001-6264-6999

Gamze Güney Eskiler 0000-0002-2088-9914

Süleyman Kaleli 0000-0002-6043-2521

Project Number TÜBİTAK-2209-A/1919B012312269
Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 29, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

AMA Özçelik SZ, Hamarat KF, Güney Eskiler G, Kaleli S. Evaluation of the Anti-Cancer Effect of TRAF2 and NCK In teracting Protein Kinase (TNIK) Inhibition in Breast Cancer Cells. Sakarya Tıp Dergisi. December 2024;14(4):398-406. doi:10.31832/smj.1593181

30703

The published articles in SMJ are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.