Review Article
BibTex RIS Cite

Improvement Of Heat Conductivity Coefficient Of Fly Ash-Based Geopolymer Brick By Substitution Of Blast Furnace Slag

Year 2023, Volume: 6 Issue: 1, 23 - 33, 25.06.2023
https://doi.org/10.51764/smutgd.1247965

Abstract

Brick, one of the oldest materials known in history, is a building material that has come up to the present day by continuing its development over time. However, with the development of technology, the brick has been continuously revised. Recently, researchers have turned to the production of geopolymer bricks by substituting waste materials into the brick structure.
In this study it is aimed to research the effect of blast furnace slag substitution on the heat conduction coefficient of fly ash-based geopolymer brick. In the study, blast furnace slag was replaced with clay in different proportions (10, 30, 50, and 70%). Furthermore, 20% of the fly ash was kept constant, 8 and 10 M of sodium hydroxide for alkaline activation, and 4% and 8% of calcium hydroxide were used to produce geopolymer bricks.
The heat conductivity coefficient determination experiment was applied to the samples. As a result, it was observed that the heat conductivity coefficient decreased with the increase of blast furnace slag, sodium hydroxide, and calcium hydroxide substitution. The best results were obtained from brick samples produced from 70% blast furnace slag, 10 M sodium hydroxide, and 8% calcium hydroxide with 0.26 W/mK. In addition, it has been concluded that geopolymer brick is an effective way to dispose of industrial waste.

References

  • Tayeh, B.A., Al Saffar, D.M., Askar, L.K., Jubeh, A.I. (2019). “Effect of incorporating pottery and bottom ash as partial replacement of cement”, Karbala International Journal of Modern Science, 5 (4), 9. DOI: 10.33640/2405-609X.1220
  • Al Saffar, D.M., Tayeh, B.A. (2018). “Influence of pottery clay in cement mortar and concrete mixture: a review”, International Journal of Engineering & Technology, 7(4), 67–71.
  • Zeyad, A.M., Johari, M.A.M., Abutaleb, A., Tayeh, B.A. (2021). “The effect of steam curing regimes on the chloride resistance and pore size of high–strength green concrete”, Construction and Building Materials, 280, 122409. https://doi.org/10.1016/j.conbuildmat.2021.122409
  • Faried, A.S., Mostafa, S.A., Tayeh, B.A., Tawfik, T.A. (2021). “The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties”, Construction and Building Materials, 290 (2021), 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279. Tayeh, B.A., Hadzima-Nyarko, M., Zeyad, A.M, Al-Harazin, S.Z. (2021). “Properties and durability of concrete with olive waste ash as a partial cement replacement”, Advanced Concrete Construction, 11 (1), 59–71. DOI: https://doi.org/10.12989/acc.2021.11.1.059
  • Amin, M., Zeyad, A.M., Tayeh, B.A., Agwa, I.S. (2021). “Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate”, Construction and Building Materials, 299 (2021), 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243.
  • Calis, G., Yildizel, S.A., Erzin, S., Tayeh, B.A. (2021). “Evaluation and optimisation of foam concrete containing ground calcium carbonate and glass fibre (experimental and modelling study)”, Case Studies in Construction Materials, 15 (2021), e00625.
  • Hamada, H., Tayeh, B., Yahaya, F., Muthusamy, K., Al-Attar, A. (2020). “Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete”, Construction and Building Materials, 261 (2020), 119790. https://doi.org/10.1016/j.conbuildmat.2020.119790.
  • Zhang, L. (2013). “Production of bricks from waste materials – a review”, Construction and Building Materials, 47 (2013) 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043
  • Ahmari, S., Zhang, L.J.C. (2012). “Production of eco-friendly bricks from copper mine tailings through geopolymerization”, Construction and Building Materials, 29 (2012), 323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048
  • Kumar, A., Kumar, S.J.C. (2013). “Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Construction and Building Materials, 38 (2013) 865–871. https://doi.org/10.1016/j.conbuildmat.2012.09.013
  • Wang, L., Sun, H., Sun, Z., Ma, E. (2016). “New technology and application of brick making with coal fly ash”, Journal of Material Cycles and Waste Management, 18 (4) (2016) 763–770. DOI 10.1007/s10163-015-0368-9.
  • Sukmak, P., Horpibulsuk, S., Shen, S.L.C.J. (2013). “Strength development in clay–fly ash geopolymer”, Construction and Building Materials, 40 (2013) 566–574. https://doi.org/10.1016/j.conbuildmat.2012.11.015
  • Abdullah, M., Ibrahim, V., Tahir, M. (2015). “The properties and durability of fly ash-based geopolymeric masonry bricks. Eco-Efficient Masonry Bricks and Blocks, Elsevier, 2015, 273–287. https://doi.org/10.1016/B978-1-78242-305-8.00012-7
  • Zawrah, M., Gado, R., Feltin, N., Ducourtieux, S., Devoille, L.J.P.S. (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blastfurnace slag for geopolymer production, Process Safety and Environmental Protection, 103 (2016), 237–251.
  • Venugopal, K., Sasalatti, V. (2021). Development of alkali activated geopolymer masonry blocks. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016. M.M. Ahmed et al. Case Studies in Construction Materials 15 (2021) e00737 13
  • Apithanyasai, S., Nooaek, P., Supakata, N.J.E.J. (2018). The utilization of concrete residue with electric arc furnace slag in the production of geopolymer bricks, Engıneerıng Journal, 22 (1) (2018) 1–14. DOI:10.4186/ej.2018.22.1.1
  • Ahmari, S., Zhang, L.J.C., (2013). “Durability and leaching behavior of mine tailings-based geopolymer bricks”, Construction and Building Materials, 44 (2013) 743–750. https://doi.org/10.1016/j.conbuildmat.2013.03.075
  • Ahmari, S., Zhang, L.J.C., (2013). “Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks”, Construction and Building Materials, 40 (2013) 1002–1011. https://doi.org/10.1016/j.conbuildmat.2012.11.069
  • Madani, H., Ramezanianpour, A., Shahbazinia, M., Ahmadi, E.J.C. (2020). “Geopolymer bricks made from less active waste materials”, Construction and Building Materials, 247 (2020) 118441. https://doi.org/10.1016/j.conbuildmat.2020.118441
  • Tayeh, B.A., Alyousef, R., Alabduljabbar, H., Alaskar, A. (2021). “ Recycling of rice husk waste for a sustainable concrete: a critical review”, Journal of Cleaner Production, 312 (2021), 127734.
  • Kuranchie, F.A., Shukla, S.K., Habibi, D.J. (2016). “Utilisation of iron ore mine tailings for the production of geopolymer bricks”, International Journal of Mining, 30 (2) (2016) 92–114. https://doi.org/10.1080/17480930.2014.993834
  • Apithanyasai, S., Supakata, N., Papong, S.J.H. (2020). “The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production”, Heliyon, 6 (3) (2020) e03697. https://doi.org/10.1016/j.heliyon.2020.e03697Get Davidovits J. (2008). “Geopolymers_inorganic polymeric new materials”. Journal of Thermal Analysis and Calorimetry, 37(8), 1633–56.
  • Davidovits J. High-Alkali Cements for 21st Century Concretes. ACI Special Publication; 1994. 144.
  • Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P. (2010). “Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete”. Materials & Design, 31(10), 4748–54. https://doi.org/10.1016/j.matdes.2010.05.012
  • O’Connor SJ, Mac Kenzie KJD. (2010). “A new hydroxide-based synthesis method for inorganic polymers”. Journal of Materials Science, 45(12), 3284–8. DOI 10.1007/s10853-010-4340-8
  • Kani EN, Allahverdi A. (2009). “Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan”. Journal of Materials Science, 44(12), 3088–97.
  • Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. (2010). “On the development of fly ash-based geopolymer concrete”. ACI Materials Journal, 10(6), 467–72.
  • Bakharev T, Sanjayan JG, Cheng Yi-Bing. (1999). “Alkali activation of Australian slag cements”. Cement and Concrete Research, 29(1), 113–20. https://doi.org/10.1016/S0008-8846(98)00170-7
  • Barbosa VFF, Mackenzie KJD. (2003). “Thermal behaviour of inorganic geopolymers and composites derived from sodium polysalate”. Materials Research Bulletin, 38(2), 319–31.
  • Wu H-C, Sun P. (2007). “New building materials from fly ash-based lightweight inorganic polymer”. Construction and Building Materials, 21(1), 211–7. https://doi.org/10.1016/j.conbuildmat.2005.06.052 Duxson PF-JA, Provis J, Lukey G, Palomo A, Van Deventer J. (2007). “Geopolymer technology: the current state of the art”. Journal of Material Science, 42(9), 2917–33.
  • Barbosa VFF, Mackenzie KJD, Thaumaturgo C. (2000). “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”. International Journal of Inorganic Materials, 2(4), 309–17. https://doi.org/10.1016/S1466-6049(00)00041-6
  • Swanepoel JC, Strydom CA. (2002). “Utilisation of fly ash in a geopolymeric material”. Applied Geochemistry, 17(8),1143–8. https://doi.org/10.1016/S0883-2927(02)00005-7
  • Surul, O., Bilir, T., Gholampour, A., Sutcu, M., Ozbakkaloglu, T., Gencel, O. (2020), “Recycle of ground granulated blast furnace slag and fly ash on eco-friendly brick production”, European Journal of Environmental and Civil Engineering, 26(5), 1738-1756. https://doi.org/10.1080/19648189.2020.1731714
  • Apithanyasai, S., Supakata, N., Papong, S. (2020), “The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production”, Heliyon 6, (2020), e03697. https://doi.org/10.1016/j.heliyon.2020.e03697Get
  • Ganesh, A.C., Muthukannan, M., Aakassh, S., Subramanaian, B.P. (2020), “Optimisation of bio medical waste ash in GGBS based of geopolymer concrete” IOP Conf. Series: Materials Science and Engineering 872 (2020) 012154. DOI 10.1088/1757-899X/872/1/012163
  • Youssef, N., Rabenantoandro, A.Z., Dakhli, Z., Chapiseau, C., Waendendries, F., Chehade, F.H., Lafhaj, Z. (2019). “Reuse of waste bricks: a new generation of geopolymer bricks”, SN Applied Sciences, 1252 (2019), | https://doi.org/10.1007/s42452-019-1209-6.
  • Jindal, B.B., Sharma, R. (2020). “The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review”, Construction and Building Materials, 252 (2020), 119028. https://doi.org/10.1016/j.conbuildmat.2020.119028Get
  • Web ileti. https://emboykimya.com.tr/urunler/sodyum-hidroksit/. Date of Access: 20.12.2022
  • Web iletti. https://emboykimya.com.tr/urunler/kalsiyum-hidroksit/. Date of Access: 20.12.2022
  • Al Amara, S.N., Çağlar, A. (2022). “Determination Of The Heat Conduction Coefficient Of Boron Waste, Fly Ash Based Geopolymer Bricks”, Current Vıew Of Buıldıng Materıal, Lambert akademic publishing.
  • Ahmed, M.M., El-Naggar, K.A.M., Tarek, D., Ragab, A., Sameh, H., Zeyad, A.M., Tayeh, B.A., Maafa, İ.M., Yousef, A. (2021), “Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste”, Case Studies in Construction Materials, 15(2021)e00737. https://doi.org/10.1016/j.cscm.2021.e00737
  • TS EN 772,1, (2012), “Methods of test for masonry units- Part 1: Determination of compressive strength”, Turkish Standardization Institute, Ankara.
  • Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X. (2015). “Development of porous fly ash-based geopolymer with low thermal conductivity”, Materials and Design, 65 (2015), 529-533. https://doi.org/10.1016/j.matdes.2014.09.024

Uçucu Kül Bazlı Geopolimer Tuğlanın Yüksek Fırın Cürufu İkamesiyle Isı İletim Katsayısının İyileştirilmesi

Year 2023, Volume: 6 Issue: 1, 23 - 33, 25.06.2023
https://doi.org/10.51764/smutgd.1247965

Abstract

Tarihin bilinen en eski malzemelerinden olan tuğla, zamanla gelişimini sürdürerek günümüze kadar gelmeyi başaran bir yapı malzemesidir. Teknolojinin gelişmesiyle tuğla sürekli revize edilmiştir. Son zamanlarda araştırmacılar, tuğla bünyesine atık malzemeler ikame ederek geopolimer tuğla üretimine yönelmiştir.
Bu çalışmada, uçucu kül bazlı geopolimer tuğlaya yüksek fırın cürufu ikamesinin ısı iletim katsayısına etkisinin araştırılması amaçlanmıştır. Çalışmada, farklı oranlarda (%10, 30, 50 ve 70) yüksek fırın cürufu kil ile yer değiştirilmiştir. %20 oranında uçucu kül sabit tutulmuş, Alkali aktivasyon için 8 ve 10 M sodyum hidroksit, %4 ve %8 oranında kalsiyum hidroksit kullanılarak geopolimer tuğla üretimi yapılmıştır. Numunelere ısı iletim katsayısı tayini deneyi uygulanmıştır. Sonuç olarak; yüksek fırın cürufu, sodyum hidroksit ve kalsiyum hidroksit ikamesinin artmasıyla ısı iletim katsayısında azalma olduğu görülmüştür. En iyi sonuç, 0,26 W/mK ile %70 oranında yüksek fırın cürufu, 10 M sodyum hidroksit ve %8 kalsiyum hidroksitten üretilen tuğla numunelerinden elde edilmiştir. Bunun yanı sıra geopolimer tuğlanın endüstriyel atıkların bertaraf edilmesi için etkin bir yol olduğu sonucuna varılmıştır.

References

  • Tayeh, B.A., Al Saffar, D.M., Askar, L.K., Jubeh, A.I. (2019). “Effect of incorporating pottery and bottom ash as partial replacement of cement”, Karbala International Journal of Modern Science, 5 (4), 9. DOI: 10.33640/2405-609X.1220
  • Al Saffar, D.M., Tayeh, B.A. (2018). “Influence of pottery clay in cement mortar and concrete mixture: a review”, International Journal of Engineering & Technology, 7(4), 67–71.
  • Zeyad, A.M., Johari, M.A.M., Abutaleb, A., Tayeh, B.A. (2021). “The effect of steam curing regimes on the chloride resistance and pore size of high–strength green concrete”, Construction and Building Materials, 280, 122409. https://doi.org/10.1016/j.conbuildmat.2021.122409
  • Faried, A.S., Mostafa, S.A., Tayeh, B.A., Tawfik, T.A. (2021). “The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties”, Construction and Building Materials, 290 (2021), 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279. Tayeh, B.A., Hadzima-Nyarko, M., Zeyad, A.M, Al-Harazin, S.Z. (2021). “Properties and durability of concrete with olive waste ash as a partial cement replacement”, Advanced Concrete Construction, 11 (1), 59–71. DOI: https://doi.org/10.12989/acc.2021.11.1.059
  • Amin, M., Zeyad, A.M., Tayeh, B.A., Agwa, I.S. (2021). “Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate”, Construction and Building Materials, 299 (2021), 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243.
  • Calis, G., Yildizel, S.A., Erzin, S., Tayeh, B.A. (2021). “Evaluation and optimisation of foam concrete containing ground calcium carbonate and glass fibre (experimental and modelling study)”, Case Studies in Construction Materials, 15 (2021), e00625.
  • Hamada, H., Tayeh, B., Yahaya, F., Muthusamy, K., Al-Attar, A. (2020). “Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete”, Construction and Building Materials, 261 (2020), 119790. https://doi.org/10.1016/j.conbuildmat.2020.119790.
  • Zhang, L. (2013). “Production of bricks from waste materials – a review”, Construction and Building Materials, 47 (2013) 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043
  • Ahmari, S., Zhang, L.J.C. (2012). “Production of eco-friendly bricks from copper mine tailings through geopolymerization”, Construction and Building Materials, 29 (2012), 323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048
  • Kumar, A., Kumar, S.J.C. (2013). “Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Construction and Building Materials, 38 (2013) 865–871. https://doi.org/10.1016/j.conbuildmat.2012.09.013
  • Wang, L., Sun, H., Sun, Z., Ma, E. (2016). “New technology and application of brick making with coal fly ash”, Journal of Material Cycles and Waste Management, 18 (4) (2016) 763–770. DOI 10.1007/s10163-015-0368-9.
  • Sukmak, P., Horpibulsuk, S., Shen, S.L.C.J. (2013). “Strength development in clay–fly ash geopolymer”, Construction and Building Materials, 40 (2013) 566–574. https://doi.org/10.1016/j.conbuildmat.2012.11.015
  • Abdullah, M., Ibrahim, V., Tahir, M. (2015). “The properties and durability of fly ash-based geopolymeric masonry bricks. Eco-Efficient Masonry Bricks and Blocks, Elsevier, 2015, 273–287. https://doi.org/10.1016/B978-1-78242-305-8.00012-7
  • Zawrah, M., Gado, R., Feltin, N., Ducourtieux, S., Devoille, L.J.P.S. (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blastfurnace slag for geopolymer production, Process Safety and Environmental Protection, 103 (2016), 237–251.
  • Venugopal, K., Sasalatti, V. (2021). Development of alkali activated geopolymer masonry blocks. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016. M.M. Ahmed et al. Case Studies in Construction Materials 15 (2021) e00737 13
  • Apithanyasai, S., Nooaek, P., Supakata, N.J.E.J. (2018). The utilization of concrete residue with electric arc furnace slag in the production of geopolymer bricks, Engıneerıng Journal, 22 (1) (2018) 1–14. DOI:10.4186/ej.2018.22.1.1
  • Ahmari, S., Zhang, L.J.C., (2013). “Durability and leaching behavior of mine tailings-based geopolymer bricks”, Construction and Building Materials, 44 (2013) 743–750. https://doi.org/10.1016/j.conbuildmat.2013.03.075
  • Ahmari, S., Zhang, L.J.C., (2013). “Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks”, Construction and Building Materials, 40 (2013) 1002–1011. https://doi.org/10.1016/j.conbuildmat.2012.11.069
  • Madani, H., Ramezanianpour, A., Shahbazinia, M., Ahmadi, E.J.C. (2020). “Geopolymer bricks made from less active waste materials”, Construction and Building Materials, 247 (2020) 118441. https://doi.org/10.1016/j.conbuildmat.2020.118441
  • Tayeh, B.A., Alyousef, R., Alabduljabbar, H., Alaskar, A. (2021). “ Recycling of rice husk waste for a sustainable concrete: a critical review”, Journal of Cleaner Production, 312 (2021), 127734.
  • Kuranchie, F.A., Shukla, S.K., Habibi, D.J. (2016). “Utilisation of iron ore mine tailings for the production of geopolymer bricks”, International Journal of Mining, 30 (2) (2016) 92–114. https://doi.org/10.1080/17480930.2014.993834
  • Apithanyasai, S., Supakata, N., Papong, S.J.H. (2020). “The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production”, Heliyon, 6 (3) (2020) e03697. https://doi.org/10.1016/j.heliyon.2020.e03697Get Davidovits J. (2008). “Geopolymers_inorganic polymeric new materials”. Journal of Thermal Analysis and Calorimetry, 37(8), 1633–56.
  • Davidovits J. High-Alkali Cements for 21st Century Concretes. ACI Special Publication; 1994. 144.
  • Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P. (2010). “Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete”. Materials & Design, 31(10), 4748–54. https://doi.org/10.1016/j.matdes.2010.05.012
  • O’Connor SJ, Mac Kenzie KJD. (2010). “A new hydroxide-based synthesis method for inorganic polymers”. Journal of Materials Science, 45(12), 3284–8. DOI 10.1007/s10853-010-4340-8
  • Kani EN, Allahverdi A. (2009). “Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan”. Journal of Materials Science, 44(12), 3088–97.
  • Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. (2010). “On the development of fly ash-based geopolymer concrete”. ACI Materials Journal, 10(6), 467–72.
  • Bakharev T, Sanjayan JG, Cheng Yi-Bing. (1999). “Alkali activation of Australian slag cements”. Cement and Concrete Research, 29(1), 113–20. https://doi.org/10.1016/S0008-8846(98)00170-7
  • Barbosa VFF, Mackenzie KJD. (2003). “Thermal behaviour of inorganic geopolymers and composites derived from sodium polysalate”. Materials Research Bulletin, 38(2), 319–31.
  • Wu H-C, Sun P. (2007). “New building materials from fly ash-based lightweight inorganic polymer”. Construction and Building Materials, 21(1), 211–7. https://doi.org/10.1016/j.conbuildmat.2005.06.052 Duxson PF-JA, Provis J, Lukey G, Palomo A, Van Deventer J. (2007). “Geopolymer technology: the current state of the art”. Journal of Material Science, 42(9), 2917–33.
  • Barbosa VFF, Mackenzie KJD, Thaumaturgo C. (2000). “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”. International Journal of Inorganic Materials, 2(4), 309–17. https://doi.org/10.1016/S1466-6049(00)00041-6
  • Swanepoel JC, Strydom CA. (2002). “Utilisation of fly ash in a geopolymeric material”. Applied Geochemistry, 17(8),1143–8. https://doi.org/10.1016/S0883-2927(02)00005-7
  • Surul, O., Bilir, T., Gholampour, A., Sutcu, M., Ozbakkaloglu, T., Gencel, O. (2020), “Recycle of ground granulated blast furnace slag and fly ash on eco-friendly brick production”, European Journal of Environmental and Civil Engineering, 26(5), 1738-1756. https://doi.org/10.1080/19648189.2020.1731714
  • Apithanyasai, S., Supakata, N., Papong, S. (2020), “The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production”, Heliyon 6, (2020), e03697. https://doi.org/10.1016/j.heliyon.2020.e03697Get
  • Ganesh, A.C., Muthukannan, M., Aakassh, S., Subramanaian, B.P. (2020), “Optimisation of bio medical waste ash in GGBS based of geopolymer concrete” IOP Conf. Series: Materials Science and Engineering 872 (2020) 012154. DOI 10.1088/1757-899X/872/1/012163
  • Youssef, N., Rabenantoandro, A.Z., Dakhli, Z., Chapiseau, C., Waendendries, F., Chehade, F.H., Lafhaj, Z. (2019). “Reuse of waste bricks: a new generation of geopolymer bricks”, SN Applied Sciences, 1252 (2019), | https://doi.org/10.1007/s42452-019-1209-6.
  • Jindal, B.B., Sharma, R. (2020). “The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review”, Construction and Building Materials, 252 (2020), 119028. https://doi.org/10.1016/j.conbuildmat.2020.119028Get
  • Web ileti. https://emboykimya.com.tr/urunler/sodyum-hidroksit/. Date of Access: 20.12.2022
  • Web iletti. https://emboykimya.com.tr/urunler/kalsiyum-hidroksit/. Date of Access: 20.12.2022
  • Al Amara, S.N., Çağlar, A. (2022). “Determination Of The Heat Conduction Coefficient Of Boron Waste, Fly Ash Based Geopolymer Bricks”, Current Vıew Of Buıldıng Materıal, Lambert akademic publishing.
  • Ahmed, M.M., El-Naggar, K.A.M., Tarek, D., Ragab, A., Sameh, H., Zeyad, A.M., Tayeh, B.A., Maafa, İ.M., Yousef, A. (2021), “Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste”, Case Studies in Construction Materials, 15(2021)e00737. https://doi.org/10.1016/j.cscm.2021.e00737
  • TS EN 772,1, (2012), “Methods of test for masonry units- Part 1: Determination of compressive strength”, Turkish Standardization Institute, Ankara.
  • Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X. (2015). “Development of porous fly ash-based geopolymer with low thermal conductivity”, Materials and Design, 65 (2015), 529-533. https://doi.org/10.1016/j.matdes.2014.09.024
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hussein Jasım Mohammed Al-hasanı 0000-0003-3936-2845

Hakan Çağlar 0000-0002-1380-8637

Arzu Çağlar 0000-0003-3928-8059

Early Pub Date June 25, 2023
Publication Date June 25, 2023
Submission Date February 5, 2023
Acceptance Date February 19, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Al-hasanı, H. J. M., Çağlar, H., & Çağlar, A. (2023). Improvement Of Heat Conductivity Coefficient Of Fly Ash-Based Geopolymer Brick By Substitution Of Blast Furnace Slag. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 6(1), 23-33. https://doi.org/10.51764/smutgd.1247965

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.