Research Article
BibTex RIS Cite

Use Of Aerogel In Brick Production: A Review

Year 2024, Volume: 7 Issue: 2, 143 - 152, 14.12.2024
https://doi.org/10.51764/smutgd.1563731

Abstract

Brick is one of the building materials that has survived from the past to the present. It has not been able to meet the needs over time and has been improved. These improvements can be made with organic waste, industrial waste or new materials derived from them. One of the popular materials used for improvement in recent years is aerogel. Aerogel, which is used in many areas, has also started to be used in the construction industry.
In this study, it was aimed to investigate the effects of aerogel on bricks by examining the studies on brick improvement with aerogel. In the study, articles and theses about aerogel were examined. As a result of the study, it was seen that aerogel improved some properties of the brick while negatively affecting some of its properties. It was also concluded that aerogel can be used in the re-functionalization of heritage structures. It has been determined that sustainable bricks with excellent thermal properties can be produced by using aerogel.

References

  • Al Amara, S. N. A., & Çağlar, A. (2022). “Academic Studies on the Use of Waste in Geopolymer Brick Production”. Journal of Sustainable Engineering Applications and Technological Developments, 5(2), 171-176. https://doi.org/10.51764/smutgd.1205987.
  • Al Amara, S.N.A., Çağlar, A. (2023). “Use of Boron Waste in Fly Ash Based Geopolymer Bricks”, Engineering and Technology Journal, 8(9), 27-95,2800.
  • Aldakshe, A., Çağlar, H., Çağlar, A., & Avan, Ç. (2020). “The investigation of use as aggregate in lightweight concrete production of boron wastes”. Civil Engineering Journal, 6(7), 1328-35. DOI:10.28991/cej-2020-03091551.
  • Al-Hasani, H. J. M., Çağlar, H., & Çağlar, A. (2023a). “Improvement Of Heat Conductivity Coefficient Of Fly Ash-Based Geopolymer Brick By Substitution Of Blast Furnace Slag”. Engineering Applications and Technological Developments, 6(1), 23-33. https://doi.org/10.51764/smutgd.1247965.
  • Al-Hasani, H. J. M., Çağlar, H., & Çağlar, A. (2023b). Effect of Blast Furnace Slag on Environmentally Friendly Fly Ash Based Geopolymer Bricks. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(29), 151-163. https://doi.org/10.5281/zenodo.8418240.
  • Bakış R., Koyuncu H., Demirbaş Y. (2006). “An investigation of waste foundry sand in asphalt concrete mixtures”. Waste Management & Research, 24(3), 269-274. https://doi.org/10.1177/0734242X06064822.
  • Bianco, V., Manca, O., Nardini, S. & Vafai, K. (2015). Heat transfer enhancement with nanofluids. CRC Press.
  • Bostancı, L. (2020). “A comparative study of petroleum coke and silica aerogel inclusion on mechanical, pore structure, thermal conductivity and microstructure properties of hybrid mortars”. Journal of Building Engineering, 31, 101478. https://doi.org/10.1016/j.jobe.2020.101478.
  • Bozoğlu, D. (2014). Preparation, characterization and ınvestigation of dielectric properties of aerogel-reinforced polymer composites. [Master’s Thesis, İstanbul University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Buratti, C., Merli, F., Belloni, E., & Spaccini, F. (2022). Thermal and acoustic performance of additive aerogel-clay bricks. In Journal of Physics: Conference Series 2385 (1), 012016. IOP Publishing.
  • Chen, H.B., Chiou, B.S., Wang, Y.Z., & Schiraldi, D.A. (2013). “Biodegradable pectin/clay aerogels. ACS Applied Materials & Interfaces”, 5(5), 1715-1721. https://doi.org/10.1021/am3028603.
  • Chen, Y. X., & Yu, Q. (2024). “Surface modification of miscanthus fiber with hydrophobic silica aerogel for high performance bio-lightweight concrete”. Construction and Building Materials, 411, 134478. https://doi.org/10.1016/j.conbuildmat.2023.134478.
  • Cuce, E., Cuce, P.M., Wood, C.J., & Riffat, S.B. (2014). “Toward aerogel based thermal superinsulation in buildings: a comprehensive review”. Renewable & Sustainable Energy Reviews, 34, 273-299. https://doi.org/10.1016/j.rser.2014.03.017.
  • Çağlar, H., & Çağlar, A. (2019). “Research of Physical and Mechanical Properties of Blended Bricks with Fly Ash Based, Blast Furnace Slag Addition”. International Journal of Research–Granthaalayah, 7(1), 126-136. https://doi.org/10.29121/granthaalayah.v7.i1.2019.1041.
  • Çağlar, H., Çağlar, A., Korkmaz, S. Z., Demirel, B., & Bayraktar, O. Y. (2018). “Comparison of Physical, Mechanical and Structural Characterization Properties of Current and Factory Produced Blend Bricks Used in Traditional Kastamonu Houses”. Fırat University Journal of Engineering Sciences, 32(2).
  • Çağlar, A. (2023). “Effects of silica airgel produced from boron waste on compressive strength and thermal performance of environmentally friendly bricks”. Turkish Journal of Nature and Science, 12(3), 24-32.
  • Çalapkulu, S. (2024). “The World's Lightest Solid, Aerogel”. My Sector Smart Business Magazine. https://www.sektorumdergisi.com/dunyanin-en-hafif-katisi-aerojel/. Erişim Tarihi: 01.10.2024.
  • Çimen, S. (2023). Examination of engineering properties of silica aerogel added lightweight concrete produced using volcanic tufa wastes, [Master’s Thesis, Bayburt University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Çimen, A.E. (2021). Silica based aerogel production and characterization from cast sand and waste casting sand, [Master’s Thesis, Sakarya University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Çimen, S., Çağlar, H., Çağlar, A., & Can, Ö. (2020). “Effect of boron wastes on the engineering properties of perlite based brick”. Turkish Journal of Nature and Science, 9(2), 50-56.
  • Demircan, H. (2020a). “Demircan, H. (2020). “Detectıon of heat losses ın buıldıngs by usıng thermal camera method (Adapazarı example)”. Journal of Sustainable Engineering Applications and Technological Developments, 3(1), 26-31.
  • Demircan, H. (2020a). Comparison of Temperature Controlled and Natural Circulation Solar Powered Domestic Hot Water Preparation Systems, Journal of Sustainable Engineering Applications and Technological Developments 3(1), 12-25.
  • Dorcheh, A.S., & Abbasi, M.H. (2008). “Silica aerogel; synthesis, properties and characterization”, Journal of Materials Processing Technology, 199 (1), 10 – 26. https://doi.org/10.1016/j.jmatprotec.2007.10.060.
  • Du, F., Zhu, W., Yang, R., Zhang, Y., Wang, J., Li, W., & Li, T. (2023). “Bioinspired super thermal insulating, strong and low carbon cement aerogel for building envelope”. Advanced Science, 10(18), 2300340.
  • Engel-Herbert, R., Pforte, H., & Hesjedal, T. (2007). “CVD synthesis and purification of singlewalled carbon nanotubes using silica-supported metal catalyst”. Materials Letters, 61(11), 2589-2593. https://doi.org/10.1002/advs.202300340.
  • Gao, G.M., Miao, L.N., Ji, G.J., Zou, H.F., & Gan, S.C. (2009). “Preparation and characterization of silica aerogels from oil shale ash”. Materials Letters, 63(30), 2721-2724. https://doi.org/10.1016/j.matlet.2009.09.053.
  • Ganobjak, M., Brunner, S., & Wernery, J. (2020). “Aerogel materials for heritage buildings: Materials, properties and case studies”. Journal of Cultural Heritage, 42, 81-98. https://doi.org/10.1016/j.culher.2019.09.007.
  • Ganobjak, M., Malfait, W. J., Just, J., Käppeli, M., Mancebo, F., Brunner, S., & Wernery, J. (2023, November). Development and evaluation of highly thermally insulating aerogel glass bricks. In Journal of Physics: Conference Series, 2600(11), 112015. IOP Publishing.
  • Gavrila, C., & Melita, L. (2023, March). Statistical analysis of the compositions of insulating plasters with aerogel. In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI,12493, pp. 384-389. SPIE.
  • Ghazi, K., & Wakili, A. (2017). “Remhof Reaction of aerogel containing ceramic fibre insulation to fire exposure”. Fire and Materials, 41(1), 29-39. https://doi.org/10.1002/fam.2367.
  • Gürsoy, M. (2019). Evaluation of boron wastes in aerogel production, [Master’s Thesis, Ahi Evran University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Huber, L., Zhao, S., Malfait, W,J., Vares, S., & Koebel, M.M. (2017). “Fast and minimal-solvent production of superinsulating silica aerogel granulate”. Angewandte Chemie International Edition, 56(17), 4753-4756. https://doi.org/10.1002/anie.201700836.
  • Jia, G., Guo, J., & Li, Z. (2023). “Controllable preparation of aerogel/expanded perlite composite and its application in thermal insulation mortar”. Construction and Building Materials, 394, 132257. https://doi.org/10.1016/j.conbuildmat.2023.132257.
  • Job, N., Thery, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.N., Beguin, F., & Pirard, J.P. (2005). “Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials”. Carbon, 43(12), 2481-2494. https://doi.org/10.1016/j.carbon.2005.04.031.
  • Joo, P., Yao, Y., Teo, N., & Jana, S. C. (2021). “Modular aerogel brick fabrication via 3D-printed molds”. Additive Manufacturing, 46, 102059. https://doi.org/10.1016/j.addma.2021.102059.
  • Kale, M. O., Çağlar, H., Çağlar, A., Apay, A. C., & Çimen, S. (2021). “Improving of lightweight concrete properties produced with Pumice Aggregate of Nevşehir Region with fly Ash Substitution”. Academic Platform-Journal of Engineering and Science, 9(2), 302-308. https://doi.org/10.21541/apjes.732592.
  • Kistler, S.S. (1941). Method of making aerogels. U. S. Patent 2 (767), 249.
  • Koebel, M., Rigacci, A., & Achard, P. (2012). “Aerogel-based thermal superinsulation: an overview”. Journal of Sol-
  • Gel Science and Technology, 63 (3) (2012), 315-339.
  • Koebel, M.M., Huber, L., Zhao, S., & Malfait, W.J. (2016). “Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silicabiopolymer hybrid aerogels: from laboratory to pilot scale”. Journal of Sol-Gel Science and Technology, 79 (2), 308-318.
  • Kogel, J.E., Trivedi, N.C., Barker, J.M., & Krukowski S.T( Eds.), (2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses, SME.
  • Lee, Y.J, Jung, J.C., Yi, J., Baeck, S.H., Yoon, J.R & Song, K. (2010). “Preparation of carbon aerogel in ambient conditions for electrical double - layer capacitor”. Current Applied Physics, 10(2), 682–686. https://doi.org/10.1016/j.cap.2009.08.017.
  • Lin, Y., Ehlert, G.J., Bukowsky, C., & Sodano, H.A. (2011). “Superhydrophobic functionalized graphene aerogels”. ACS Applied Materials & Interfaces, 3 (7), 2200 – 2203.
  • Liu, X., Wang, M., & Risen V.M. (2002). Polymer-attached functional ınorganic-organic hybrid nano-composite aerogels materials research society. Boston, MA, United States, 435-440.
  • Mackenzie J.D., Chung Y., Hu Y. (1992). “Rubbery ormosils and their applications”, Journal of Non-Crystalline Solids, 147, 271-279. https://doi.org/10.1016/S0022-3093(05)80629-5.
  • Mazın, A. K. M. (2024). Silika Aerojel Ve Pirinç Kabuğu Külünün Tuğla Özelliklerine Etkisi [Master’s Thesis, Ahi Evran University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Meliță, L., Calotă, R., & Amăreanu, M. (2024). “Silica Aerogel-Incorporated Cement and Lime Plasters for Building Insulation: An Experimental Study”. Buildings, 14(8), 2300. https://doi.org/10.3390/buildings14082300.
  • Mohanan, J.L., & Brock, S.L. (2004). “A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties”. Journal of Non-Crystalline Solids, 350, 1- 8. https://doi.org/10.1016/j.jnoncrysol.2004.05.020.
  • Ng S, Jelle BP, Staehli T. (2016). “Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar”. Cement and Concrete Composites, 72(2016): 213–221. https://doi.org/10.1016/j.cemconcomp.2016.06.007.
  • Öz, D. C., Öz, B., & Kaya, N. (2018). ““Effect of aging and drying time on physical properties of alumina Aerogels”. Journal of Balikesir University Institute of Science,20(1), 198-211.
  • Öztürk, B., (2012). Production of Metal-Doped Carbon Aerogel and Investigation of Its Electrochemical Properties. [Master’s Thesis, Gazi University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Palta, E., Çağlar, H., & Çağlar, A. (2020). “The effect of boric acid on mechanical properties and structural characterization of self-compacting concrete”. Turkish Journal of Nature and Science, 9(Special Issue), 160-166. https://doi.org/10.46810/tdfd.726131.
  • Radha, M. A. Atık Sularda Karbon Aerojel ile Ağır Metal Tutunması. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Bölümü, Yüksek Lisans Tezi, 2008.
  • Reynolds, J.G., Coronado, P.r., & Hrubesh, L.W. (2001). “Hydrophobic aerogels for oil-spill clean up – synthesis and characterization”. Journal of Non-Crystalline Solids, 292 (1), 127-137. https://doi.org/10.1016/S0022-3093(01)00882-1.
  • Schmidt, M., & Schwertfeger, F. (1998). “Applications for silica aerogel products”. Journal of Non-Crystalline Solids, 225, 364 – 368. https://doi.org/10.1016/S0022-3093(98)00054- 4
  • Sehaqui, H., Qi, Z., & Berglund, L.A. (2011). “High - porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)”. Composites Science and Technology, 71 (13), 1593 – 1599. https://doi.org/10.1016/j.compscitech.2011.07.003.
  • Shah, S. N., Mo, K. H., Yap, S. P., & Radwan, M. K. (2021). “Towards an energy efficient cement composite incorporating silica aerogel: A state of the art review”. Journal of Building Engineering, 44, 103227. https://doi.org/10.1016/j.jobe.2021.103227.
  • Smirnova, I., Suttiruengwong, S., & Arlt, W. (2004). “Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems”. Journal of Non-Crystalline Solids, 350, 54-60. https://doi.org/10.1016/j.jnoncrysol.2004.06.031.
  • Stojanovic, A., Zhao, S., Angelica, E., Malfait, W.J. & Koebel, M.M. (2021). “Three routes to superinsulating silica aerogel powder”. Journal of Sol-Gel Science and Technology, 90, 57–66.
  • Tay, L. T., Lee, Y. Y., Kueh, A. B. H., & Lee, Y. H. (2024). “Mechanical Characteristics of Silica Aerogel Mortar and Sandwiched Mortar with Silica Aerogel Mat Core”. Journal of Materials in Civil Engineering, 36(1), 04023516. https://doi.org/10.1061/JMCEE7.MTENG-15207.
  • Tezel, H., Çağlar, H., Çağlar, A., Can, Ö., & Çimen, S. (2020). “Effects of borıc acid additive to pumice aggregate lightweight concrete properties”. International Journal of Scientific and Technological Research, 6(9), 1-10.
  • Wang, L., Schiraldi, D.A., & Sánchez-Soto, M. (2014). “Foamlike xanthan gum/clay aerogel composites and tailoring properties by blending with agar”. Industrial & Engineering Chemistry Research, 53 (18), 7680-7687. https://doi.org/10.1021/ie500490n.
  • Wei T. Y., Lu S. Y., & Chang Y. C. (2009). “A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities”. The Journal of Physical Chemistry C - ACS Publications, 113(17), 7424–7428. https://doi.org/10.1021/jp900380q.
  • Welsch, T., Vievers, Y., Schnellenbach-Held, M., Bialuschewski, D., & Milow, B. (2023). “Comparison of Different Aerogel Granules for Use as Aggregate in Concrete”. Gels, 9(5), 406. https://doi.org/10.3390/gels9050406.
  • Wernery, J., Ben-Ishai, A., Binder, B., & Brunner, S. (2017). Aerobrick—An aerogel-filled insulating brick. Energy Procedia, 134, 490-498. https://doi.org/10.1016/j.egypro.2017.09.607.
  • Wu, H., Zhang, H., Zhang, G., Liu, J., Liu, Z., & Du, F. (2023). Study on preparation and performance of advanced aerogel foamed concrete with ultra-light aerogel. Construction and Building Materials, 366, 130166. https://doi.org/10.1016/j.conbuildmat.2022.130166.
  • Yang, H., Kong, X., Zhang, Y., Wu, C., Cao, E., (2011), “Mechanical properties of polymer– modified silica aerogels dried under ambient pressure”, Journal Of Non–Crystalline Solids, 357(19–20), 3447 – 3453.
  • Yılmaz, Y. (2013). Farklı başlangıç maddeleri kullanılarak sol-jel yöntemiyle monolitik silika aerojel ve silika aerojel sentezi ve karakterizasyonu. [Master’s Thesis, Gazi University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.

Aerojelin Tuğla Üretiminde Kullanımı: Bir İnceleme

Year 2024, Volume: 7 Issue: 2, 143 - 152, 14.12.2024
https://doi.org/10.51764/smutgd.1563731

Abstract

Tuğla, geçmişten günümüze varlığını sürdürmüş yapı malzemelerinden biridir. Zaman içerisinde ihtiyaçları karşılayamamış ve iyileştirilmiştir. Bu iyileştirmeler organik atıklar, endüstriyel atıklar ya da bunlardan türetilen yeni malzemelerle yapılabilmektedir. Son yıllarda iyileştirme için kullanılan popüler malzemelerden biri de aerojeldir. Birçok alanda kullanılan aerojel, inşaat sektöründe de kullanılmaya başlanmıştır.
Bu çalışmada, aerojelle tuğla iyileştirilmesi yapılan çalışmalar irdelenerek aerojelin tuğla üzerindeki etkilerinin araştırılması amaçlanmıştır. Çalışmada aerojel hakkında yapılan makale ve tezler irdelenmiştir. Çalışma sonucunda, aerojelin tuğlanın bazı özelliklerini iyileştirirken bazı özelliklerini olumsuz yönde etkilediği görülmüştür. Ayrıca aerojelin miras yapılarının yeniden işlevselleştirilmesinde de kullanılabileceği sonucuna varılmıştır. Aerojel kullanımı ile sürdürülebilir ve mükemmel termal özelliklere sahip tuğlalar üretilebileceği tespit edilmiştir.

References

  • Al Amara, S. N. A., & Çağlar, A. (2022). “Academic Studies on the Use of Waste in Geopolymer Brick Production”. Journal of Sustainable Engineering Applications and Technological Developments, 5(2), 171-176. https://doi.org/10.51764/smutgd.1205987.
  • Al Amara, S.N.A., Çağlar, A. (2023). “Use of Boron Waste in Fly Ash Based Geopolymer Bricks”, Engineering and Technology Journal, 8(9), 27-95,2800.
  • Aldakshe, A., Çağlar, H., Çağlar, A., & Avan, Ç. (2020). “The investigation of use as aggregate in lightweight concrete production of boron wastes”. Civil Engineering Journal, 6(7), 1328-35. DOI:10.28991/cej-2020-03091551.
  • Al-Hasani, H. J. M., Çağlar, H., & Çağlar, A. (2023a). “Improvement Of Heat Conductivity Coefficient Of Fly Ash-Based Geopolymer Brick By Substitution Of Blast Furnace Slag”. Engineering Applications and Technological Developments, 6(1), 23-33. https://doi.org/10.51764/smutgd.1247965.
  • Al-Hasani, H. J. M., Çağlar, H., & Çağlar, A. (2023b). Effect of Blast Furnace Slag on Environmentally Friendly Fly Ash Based Geopolymer Bricks. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(29), 151-163. https://doi.org/10.5281/zenodo.8418240.
  • Bakış R., Koyuncu H., Demirbaş Y. (2006). “An investigation of waste foundry sand in asphalt concrete mixtures”. Waste Management & Research, 24(3), 269-274. https://doi.org/10.1177/0734242X06064822.
  • Bianco, V., Manca, O., Nardini, S. & Vafai, K. (2015). Heat transfer enhancement with nanofluids. CRC Press.
  • Bostancı, L. (2020). “A comparative study of petroleum coke and silica aerogel inclusion on mechanical, pore structure, thermal conductivity and microstructure properties of hybrid mortars”. Journal of Building Engineering, 31, 101478. https://doi.org/10.1016/j.jobe.2020.101478.
  • Bozoğlu, D. (2014). Preparation, characterization and ınvestigation of dielectric properties of aerogel-reinforced polymer composites. [Master’s Thesis, İstanbul University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Buratti, C., Merli, F., Belloni, E., & Spaccini, F. (2022). Thermal and acoustic performance of additive aerogel-clay bricks. In Journal of Physics: Conference Series 2385 (1), 012016. IOP Publishing.
  • Chen, H.B., Chiou, B.S., Wang, Y.Z., & Schiraldi, D.A. (2013). “Biodegradable pectin/clay aerogels. ACS Applied Materials & Interfaces”, 5(5), 1715-1721. https://doi.org/10.1021/am3028603.
  • Chen, Y. X., & Yu, Q. (2024). “Surface modification of miscanthus fiber with hydrophobic silica aerogel for high performance bio-lightweight concrete”. Construction and Building Materials, 411, 134478. https://doi.org/10.1016/j.conbuildmat.2023.134478.
  • Cuce, E., Cuce, P.M., Wood, C.J., & Riffat, S.B. (2014). “Toward aerogel based thermal superinsulation in buildings: a comprehensive review”. Renewable & Sustainable Energy Reviews, 34, 273-299. https://doi.org/10.1016/j.rser.2014.03.017.
  • Çağlar, H., & Çağlar, A. (2019). “Research of Physical and Mechanical Properties of Blended Bricks with Fly Ash Based, Blast Furnace Slag Addition”. International Journal of Research–Granthaalayah, 7(1), 126-136. https://doi.org/10.29121/granthaalayah.v7.i1.2019.1041.
  • Çağlar, H., Çağlar, A., Korkmaz, S. Z., Demirel, B., & Bayraktar, O. Y. (2018). “Comparison of Physical, Mechanical and Structural Characterization Properties of Current and Factory Produced Blend Bricks Used in Traditional Kastamonu Houses”. Fırat University Journal of Engineering Sciences, 32(2).
  • Çağlar, A. (2023). “Effects of silica airgel produced from boron waste on compressive strength and thermal performance of environmentally friendly bricks”. Turkish Journal of Nature and Science, 12(3), 24-32.
  • Çalapkulu, S. (2024). “The World's Lightest Solid, Aerogel”. My Sector Smart Business Magazine. https://www.sektorumdergisi.com/dunyanin-en-hafif-katisi-aerojel/. Erişim Tarihi: 01.10.2024.
  • Çimen, S. (2023). Examination of engineering properties of silica aerogel added lightweight concrete produced using volcanic tufa wastes, [Master’s Thesis, Bayburt University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Çimen, A.E. (2021). Silica based aerogel production and characterization from cast sand and waste casting sand, [Master’s Thesis, Sakarya University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Çimen, S., Çağlar, H., Çağlar, A., & Can, Ö. (2020). “Effect of boron wastes on the engineering properties of perlite based brick”. Turkish Journal of Nature and Science, 9(2), 50-56.
  • Demircan, H. (2020a). “Demircan, H. (2020). “Detectıon of heat losses ın buıldıngs by usıng thermal camera method (Adapazarı example)”. Journal of Sustainable Engineering Applications and Technological Developments, 3(1), 26-31.
  • Demircan, H. (2020a). Comparison of Temperature Controlled and Natural Circulation Solar Powered Domestic Hot Water Preparation Systems, Journal of Sustainable Engineering Applications and Technological Developments 3(1), 12-25.
  • Dorcheh, A.S., & Abbasi, M.H. (2008). “Silica aerogel; synthesis, properties and characterization”, Journal of Materials Processing Technology, 199 (1), 10 – 26. https://doi.org/10.1016/j.jmatprotec.2007.10.060.
  • Du, F., Zhu, W., Yang, R., Zhang, Y., Wang, J., Li, W., & Li, T. (2023). “Bioinspired super thermal insulating, strong and low carbon cement aerogel for building envelope”. Advanced Science, 10(18), 2300340.
  • Engel-Herbert, R., Pforte, H., & Hesjedal, T. (2007). “CVD synthesis and purification of singlewalled carbon nanotubes using silica-supported metal catalyst”. Materials Letters, 61(11), 2589-2593. https://doi.org/10.1002/advs.202300340.
  • Gao, G.M., Miao, L.N., Ji, G.J., Zou, H.F., & Gan, S.C. (2009). “Preparation and characterization of silica aerogels from oil shale ash”. Materials Letters, 63(30), 2721-2724. https://doi.org/10.1016/j.matlet.2009.09.053.
  • Ganobjak, M., Brunner, S., & Wernery, J. (2020). “Aerogel materials for heritage buildings: Materials, properties and case studies”. Journal of Cultural Heritage, 42, 81-98. https://doi.org/10.1016/j.culher.2019.09.007.
  • Ganobjak, M., Malfait, W. J., Just, J., Käppeli, M., Mancebo, F., Brunner, S., & Wernery, J. (2023, November). Development and evaluation of highly thermally insulating aerogel glass bricks. In Journal of Physics: Conference Series, 2600(11), 112015. IOP Publishing.
  • Gavrila, C., & Melita, L. (2023, March). Statistical analysis of the compositions of insulating plasters with aerogel. In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI,12493, pp. 384-389. SPIE.
  • Ghazi, K., & Wakili, A. (2017). “Remhof Reaction of aerogel containing ceramic fibre insulation to fire exposure”. Fire and Materials, 41(1), 29-39. https://doi.org/10.1002/fam.2367.
  • Gürsoy, M. (2019). Evaluation of boron wastes in aerogel production, [Master’s Thesis, Ahi Evran University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Huber, L., Zhao, S., Malfait, W,J., Vares, S., & Koebel, M.M. (2017). “Fast and minimal-solvent production of superinsulating silica aerogel granulate”. Angewandte Chemie International Edition, 56(17), 4753-4756. https://doi.org/10.1002/anie.201700836.
  • Jia, G., Guo, J., & Li, Z. (2023). “Controllable preparation of aerogel/expanded perlite composite and its application in thermal insulation mortar”. Construction and Building Materials, 394, 132257. https://doi.org/10.1016/j.conbuildmat.2023.132257.
  • Job, N., Thery, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.N., Beguin, F., & Pirard, J.P. (2005). “Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials”. Carbon, 43(12), 2481-2494. https://doi.org/10.1016/j.carbon.2005.04.031.
  • Joo, P., Yao, Y., Teo, N., & Jana, S. C. (2021). “Modular aerogel brick fabrication via 3D-printed molds”. Additive Manufacturing, 46, 102059. https://doi.org/10.1016/j.addma.2021.102059.
  • Kale, M. O., Çağlar, H., Çağlar, A., Apay, A. C., & Çimen, S. (2021). “Improving of lightweight concrete properties produced with Pumice Aggregate of Nevşehir Region with fly Ash Substitution”. Academic Platform-Journal of Engineering and Science, 9(2), 302-308. https://doi.org/10.21541/apjes.732592.
  • Kistler, S.S. (1941). Method of making aerogels. U. S. Patent 2 (767), 249.
  • Koebel, M., Rigacci, A., & Achard, P. (2012). “Aerogel-based thermal superinsulation: an overview”. Journal of Sol-
  • Gel Science and Technology, 63 (3) (2012), 315-339.
  • Koebel, M.M., Huber, L., Zhao, S., & Malfait, W.J. (2016). “Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silicabiopolymer hybrid aerogels: from laboratory to pilot scale”. Journal of Sol-Gel Science and Technology, 79 (2), 308-318.
  • Kogel, J.E., Trivedi, N.C., Barker, J.M., & Krukowski S.T( Eds.), (2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses, SME.
  • Lee, Y.J, Jung, J.C., Yi, J., Baeck, S.H., Yoon, J.R & Song, K. (2010). “Preparation of carbon aerogel in ambient conditions for electrical double - layer capacitor”. Current Applied Physics, 10(2), 682–686. https://doi.org/10.1016/j.cap.2009.08.017.
  • Lin, Y., Ehlert, G.J., Bukowsky, C., & Sodano, H.A. (2011). “Superhydrophobic functionalized graphene aerogels”. ACS Applied Materials & Interfaces, 3 (7), 2200 – 2203.
  • Liu, X., Wang, M., & Risen V.M. (2002). Polymer-attached functional ınorganic-organic hybrid nano-composite aerogels materials research society. Boston, MA, United States, 435-440.
  • Mackenzie J.D., Chung Y., Hu Y. (1992). “Rubbery ormosils and their applications”, Journal of Non-Crystalline Solids, 147, 271-279. https://doi.org/10.1016/S0022-3093(05)80629-5.
  • Mazın, A. K. M. (2024). Silika Aerojel Ve Pirinç Kabuğu Külünün Tuğla Özelliklerine Etkisi [Master’s Thesis, Ahi Evran University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Meliță, L., Calotă, R., & Amăreanu, M. (2024). “Silica Aerogel-Incorporated Cement and Lime Plasters for Building Insulation: An Experimental Study”. Buildings, 14(8), 2300. https://doi.org/10.3390/buildings14082300.
  • Mohanan, J.L., & Brock, S.L. (2004). “A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties”. Journal of Non-Crystalline Solids, 350, 1- 8. https://doi.org/10.1016/j.jnoncrysol.2004.05.020.
  • Ng S, Jelle BP, Staehli T. (2016). “Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar”. Cement and Concrete Composites, 72(2016): 213–221. https://doi.org/10.1016/j.cemconcomp.2016.06.007.
  • Öz, D. C., Öz, B., & Kaya, N. (2018). ““Effect of aging and drying time on physical properties of alumina Aerogels”. Journal of Balikesir University Institute of Science,20(1), 198-211.
  • Öztürk, B., (2012). Production of Metal-Doped Carbon Aerogel and Investigation of Its Electrochemical Properties. [Master’s Thesis, Gazi University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • Palta, E., Çağlar, H., & Çağlar, A. (2020). “The effect of boric acid on mechanical properties and structural characterization of self-compacting concrete”. Turkish Journal of Nature and Science, 9(Special Issue), 160-166. https://doi.org/10.46810/tdfd.726131.
  • Radha, M. A. Atık Sularda Karbon Aerojel ile Ağır Metal Tutunması. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Bölümü, Yüksek Lisans Tezi, 2008.
  • Reynolds, J.G., Coronado, P.r., & Hrubesh, L.W. (2001). “Hydrophobic aerogels for oil-spill clean up – synthesis and characterization”. Journal of Non-Crystalline Solids, 292 (1), 127-137. https://doi.org/10.1016/S0022-3093(01)00882-1.
  • Schmidt, M., & Schwertfeger, F. (1998). “Applications for silica aerogel products”. Journal of Non-Crystalline Solids, 225, 364 – 368. https://doi.org/10.1016/S0022-3093(98)00054- 4
  • Sehaqui, H., Qi, Z., & Berglund, L.A. (2011). “High - porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)”. Composites Science and Technology, 71 (13), 1593 – 1599. https://doi.org/10.1016/j.compscitech.2011.07.003.
  • Shah, S. N., Mo, K. H., Yap, S. P., & Radwan, M. K. (2021). “Towards an energy efficient cement composite incorporating silica aerogel: A state of the art review”. Journal of Building Engineering, 44, 103227. https://doi.org/10.1016/j.jobe.2021.103227.
  • Smirnova, I., Suttiruengwong, S., & Arlt, W. (2004). “Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems”. Journal of Non-Crystalline Solids, 350, 54-60. https://doi.org/10.1016/j.jnoncrysol.2004.06.031.
  • Stojanovic, A., Zhao, S., Angelica, E., Malfait, W.J. & Koebel, M.M. (2021). “Three routes to superinsulating silica aerogel powder”. Journal of Sol-Gel Science and Technology, 90, 57–66.
  • Tay, L. T., Lee, Y. Y., Kueh, A. B. H., & Lee, Y. H. (2024). “Mechanical Characteristics of Silica Aerogel Mortar and Sandwiched Mortar with Silica Aerogel Mat Core”. Journal of Materials in Civil Engineering, 36(1), 04023516. https://doi.org/10.1061/JMCEE7.MTENG-15207.
  • Tezel, H., Çağlar, H., Çağlar, A., Can, Ö., & Çimen, S. (2020). “Effects of borıc acid additive to pumice aggregate lightweight concrete properties”. International Journal of Scientific and Technological Research, 6(9), 1-10.
  • Wang, L., Schiraldi, D.A., & Sánchez-Soto, M. (2014). “Foamlike xanthan gum/clay aerogel composites and tailoring properties by blending with agar”. Industrial & Engineering Chemistry Research, 53 (18), 7680-7687. https://doi.org/10.1021/ie500490n.
  • Wei T. Y., Lu S. Y., & Chang Y. C. (2009). “A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities”. The Journal of Physical Chemistry C - ACS Publications, 113(17), 7424–7428. https://doi.org/10.1021/jp900380q.
  • Welsch, T., Vievers, Y., Schnellenbach-Held, M., Bialuschewski, D., & Milow, B. (2023). “Comparison of Different Aerogel Granules for Use as Aggregate in Concrete”. Gels, 9(5), 406. https://doi.org/10.3390/gels9050406.
  • Wernery, J., Ben-Ishai, A., Binder, B., & Brunner, S. (2017). Aerobrick—An aerogel-filled insulating brick. Energy Procedia, 134, 490-498. https://doi.org/10.1016/j.egypro.2017.09.607.
  • Wu, H., Zhang, H., Zhang, G., Liu, J., Liu, Z., & Du, F. (2023). Study on preparation and performance of advanced aerogel foamed concrete with ultra-light aerogel. Construction and Building Materials, 366, 130166. https://doi.org/10.1016/j.conbuildmat.2022.130166.
  • Yang, H., Kong, X., Zhang, Y., Wu, C., Cao, E., (2011), “Mechanical properties of polymer– modified silica aerogels dried under ambient pressure”, Journal Of Non–Crystalline Solids, 357(19–20), 3447 – 3453.
  • Yılmaz, Y. (2013). Farklı başlangıç maddeleri kullanılarak sol-jel yöntemiyle monolitik silika aerojel ve silika aerojel sentezi ve karakterizasyonu. [Master’s Thesis, Gazi University]. Yök Tez Arşivi, https://tez.yok.gov.tr/UlusalTezMerkezi/.
There are 68 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Abudalrhman Aldakshe 0009-0009-8355-3586

Ahmet Celal Apay 0000-0003-2008-6588

Early Pub Date November 4, 2024
Publication Date December 14, 2024
Submission Date October 8, 2024
Acceptance Date November 1, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Aldakshe, A., & Apay, A. C. (2024). Use Of Aerogel In Brick Production: A Review. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 7(2), 143-152. https://doi.org/10.51764/smutgd.1563731

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.